Skip to main content

Table 4 Upstream regulator analysis with IPA: proportion of up- and downregulated genes

From: Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation

Gene pattern

Activation only

Inhibition only

Both

Down regulation

64

28

50

Up regulation

28

5

45

  1. The gene expression patterns upon which the prediction is made is constituted by both up-regulated and down-regulated genes. The predicted activation and inhibition is either based on two third down regulated (n = 114/n = 78) and one third upregulated genes (n = 73/n = 50). 50 downregulated genes and 45 upregulated genes contribute likewise to activation and inhibition (The details of the contributing gens are not shown here)
  2. Based on gene expression patterns, predictions are made on activation or inactivation of known upstream regulators. Absolute activation z-scores of higher than 2.0 are considered to be highly significant. We found more than twice as much regulators predicted to be activated as compared to inhibited. These tables show the predicted upstream regulators with an absolute z-score above 2.0 in detail—some are in fact complexes or groups. The prediction is opposed to the real measurement on the micro array (rightmost columns), as far as the respective genes have passed QC and is otherwise marked as “not measured”. Mean expression per group is given as logarithm of the intensity to base 2. Reasonably high expression values are in bold face. The column “regulation AR17” denotes if the respective gene is contained in the set of regulated genes (level = L1) or at least close to significance (level = L2/L3) which holds true for the minority of genes. Activation or inhibition is not necessarily reflected by significant change of gene expression, since processes not measurable on a micro array, like for example phosphorylation, are more likely to be responsible for that