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Abstract
Background: Sleep is a restorative process and is essential for maintenance of mental and physical
health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including
genetic approaches, have been applied to sleep research. Although quantitative real time PCR has
been used in previous sleep-related gene expression studies, proper validation of reference genes
is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or
PSD) on the expression stability of the following frequently used reference genes in brain and
blood: beta-actin (b-actin), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and hypoxanthine guanine phosphoribosyl transferase (HPRT).

Results: Neither TSD nor PSD affected the expression stability of all tested genes in both tissues
indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related
gene expression studies. In order to further verify these results, the relative expression of brain
derived neurotrophic factor (BDNF) and glycerol-3-phosphate dehydrogenase1 (GPD1) was evaluated in
brain and blood, respectively. The normalization with each of four reference genes produced
similar pattern of expression in control and sleep deprived rats, but subtle differences in the
magnitude of expression fold change were observed which might affect the statistical significance.

Conclusion: This study demonstrated that sleep deprivation does not alter the expression
stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple
reference genes in quantitative RT-PCR is required for the accurate results.

Background
Sleep is a complex phenotype that involves several neuro-
chemical and physiological processes. It is known to per-
form restorative functions and to facilitate memory
consolidation [1,2]. Although sleep is essential for overall

well-being and optimal physical and psychological func-
tioning, chronic sleep restriction is frequently experienced
due to contemporary social and domestic responsibilities,
medical conditions and sleep disorders [3]. Sleep restric-
tion alters sleep architecture primarily by decreasing the
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duration of the REM (rapid eye movement) sleep stage,
also known as paradoxical sleep (PS) [3]. Therefore,
approaches that reduce or abolish PS have been used to
simulate chronic sleep restriction.

Persistent sleep debt impairs neurobehavioral functions
[3,4] and increases the risk for chronic diseases such as
cardiovascular disorders [5], erectile dysfunction [6] and
diabetes [7]. Thus, careful characterization of the effects of
sleep deprivation not only improves our knowledge about
the complex sleep process but also contributes to elucida-
tion of the mechanism underlying these chronic diseases
and their treatment. Remarkably, sleep genetics has been
emerging as one of the important features in sleep
research [8,9]. Several studies have demonstrated that
genetic background or certain gene products can affect
individual sleep patterns [10]. Investigation of these can-
didate genes can help identify the molecular machinery
responsible for both normal sleep and sleep-related disor-
ders.

Reverse transcription (RT) followed by quantitative real
time PCR (qPCR) is one of the most compelling
approaches for gene expression analysis due to speed and
simplicity of the method [11]. Potential methodological
variations can be corrected by normalizing the gene
expression of interest to a set of references, frequently
referred to as housekeeping genes, which presumably
maintain constitutive expression. However, increasing
evidence has demonstrated that the expression of com-
monly used reference genes, such as b-actin and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH), can vary under
certain circumstances [12,13]. Consequently, the selec-
tion and validation of reference genes for the tissue and
experimental conditions of interest is a critical step to gen-
erate reliable results using RTqPCR methodology.

Herein, the expression stability (M) of four common ref-
erence genes (Table 1) was evaluated in brain and blood

collected from control and sleep deprived rats, using
GeNorm software [14]. In order to validate the selected
reference genes, the expression of brain derived neurotrophic
factor (BDNF) and glycerol-3-phosphate dehydrogenase1
(GPD1) was examined in brain and blood, respectively, as
the expression of these genes has been shown to vary with
sleep deprivation [15,16].

Results
RNA quality
RNA quality is one of the most important factors that
determine the precision of RTqPCR. In order to evaluate
the quality of the DNase I treated RNA, we performed
electrophoresis in agarose gel. All RNA samples used in
this study exhibited intact 28 S and 18 S rRNA and similar
banding patterns (Figure 1), indicating that degradation
of RNA was negligible. Also, the absence of high molecu-
lar weight molecules suggested that contamination with
genomic DNA was minimal. These data demonstrated
that the RNA samples used for this study were of appropri-
ate quality to perform RTqPCR.

RTqPCR
Pilot experiments were performed with b-actin primers to
determine the optimal amounts of RNA and cDNA that
result in Ct values within the linear range. A total of 0.3 μg
of RNA, treated with DNase I, was used for the 20 μL
reverse transcription reaction and 2 μL of cDNA was used
for qPCR. Subsequently, the same amounts of RNA and
cDNA were used for all reactions producing Ct values
within 15.0 to 33.0 ranges. Analysis of each amplification
product produced a dissociation curve containing a single
peak with narrow melting temperature (Table 2), indicat-
ing that each primer pair amplified a single predominant
product.

Expression stability of the reference genes
The expression of b-actin, B2M, GAPDH and HPRT was
measured in two independent experiments where the rats

Table 1: Candidate genes with respective gene accession number and primer sequences

Gene name Access number Primer sequences (5'-3')

beta-actin NM_031144 AGCGTGGCTACAGCTTCACC
AAGTCTAGGGCAACATAGCACAGC

beta-2-microglobulin (B2M) Y00441 GCCATCCACCGGAGAATG
GGTGGAACTGAGACACGTAGCA

glyceraldehyde-3-phosphate NM_017008 TGCCCCCATGTTTGTGATG
dehydrogenase (GAPDH) GCTGACAATCTTGAGGGAGTTGT
hypoxanthine guanine NM_012583 GCGAAAGTGGAAAAGCCAAGT
phosphoribosyl transferase (HPRT) GCCACATCAACAGGACTCTTGTAG
brain derived neurotrophic NM_012513 ATGCCGAACTACCCAATCGT
factor (BDNF) GCCAATTCTCTTTTTGCTATCCA
glycerol-3-phosphate NM_022215 TGGCCCCTTTCCAAGGTT
dehydrogenase 1 (GPD1) TCCAGGCTGCTGATCTGTGA
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were distributed into three groups: controls (C), animals
subjected to paradoxical sleep deprivation for 96 hours
(PSD96) and animals subjected to PSD96 and then a
sleep recovery period of 24 hours (SR24). In the second
experiment, a group of animals subjected to total sleep
deprivation for 6 hours (TSD6) was included. For all sam-
ples, qPCR was performed at least in duplicate and repro-
ducible Ct values were obtained with correlation
coefficient > 0.99 (p < 0.0001) for both experiments.

The data from C, PSD96 and SR24 groups were arrayed in
a single matrix for the calculation of M values. To assess
the variability between the experiments, M values were
calculated for each experiment separately. The data of
TSD6 and respective control groups were analyzed in a
distinct matrix in order to discriminate the effect of PSD
from the TSD. As shown in Table 3, all genes presented rel-
atively low M values for both protocols of sleep depriva-
tion. Although the best pair of reference genes (lowest M
values) varied between the two experiments, the four
genes can be considered suitable reference genes for sleep-
related gene expression studies, according to the previ-

ously suggested cut-off of M value (0.5) for a stable refer-
ence gene [17].

To distinguish the effect of sleep deprivation on gene
expression stability, M values were also calculated for each
group (C, PSD96, SR24 and TSD6) independently, but all
M values were below the cut-off (0.5), suggesting that
total or paradoxical sleep deprivation did not alter the
expression stability of commonly used reference genes.

Validation of the reference genes
To validate the selected reference genes, the expression of
BDNF was determined by RTqPCR in brain. Relative
expression fold changes were calculated by the 2-ΔΔCT

method [18] using b-actin, B2M, GAPDH or HPRT as the
reference genes as well as by using the normalization fac-
tor (NF) derived from the geometric mean of four refer-
ence genes [14].

The normalization with each reference gene or with the
NF produced consistent results showing that PSD96 did
not alter the BDNF expression compared to the control
(Figure 2A, p > 0.05). However, conflicting results were
obtained regarding the effect of sleep recovery. While b-
actin or HPRT generated slight, but statistically significant
decrease in BDNF expression for the SR24 group (p < 0.05
and p < 0.001 for b-actin and HPRT respectively), the use
of B2M, GAPDH or NF as references did not produced a
similar reduction compared to the control (p > 0.05, Fig-
ure 2A).

In a similar way, the effect of TSD6 was also statistically
variable depending on the selection of the reference gene:
normalization with B2M, GAPDH or NF resulted in signif-
icant increase of BDNF expression compared to the con-
trol (p < 0.05), while the use of b-actin or HPRT did not
validate the effect of TSD (p > 0.05, Figure 2B).

In blood, the expression of GPD1 was evaluated since
sleep and metabolism are closely related and that GPD1 is
one of the key intermediates between the carbohydrate
and lipid metabolism [19]. All reference genes and NF
resulted in a significant increase of GPD1 expression in

Representative image of electrophoresis of total RNA in aga-rose gelFigure 1
Representative image of electrophoresis of total 
RNA in agarose gel. Total RNA extracted from brain of 
controls (1, 2, 3) and rats subjected to paradoxical sleep dep-
rivation without (4, 5, 6) or with sleep recovery (7, 8, 9) was 
fractioned in agarose gel 1%. Approximately 1.5 μg of RNA 
was loaded for each sample. Intact 28 S and 18 S rRNA were 
observed without higher molecular weight molecules.
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Table 2: Melting temperature (°C) of amplification products with 
standard deviations.

Tissue Beta-actin B2M GAPDH HPRT GOI

Brain 81.0 ± 0.2 79.5 ± 0.2 77.7 ± 0.3 78.2 ± 0.2 77.9 ± 0.1
Blood 81.1 ± 0.2 79.6 ± 0.2 77.7 ± 0.3 78.3 ± 0.2 80.1 ± 0.3

GOI: gene of interest (BDNF for brain and GPD1 for blood).

Table 3: Reference genes with their respective M-values in three 
distinct experiments.

Brain Blood
Exp_1 Exp_2 Exp_3 Exp_1 Exp_2 Exp_3

Actin 0.163 0.160 0.152 0.234 0.159 0.217
B2M 0.110 0.160 0.166 0.309 0.226 0.162
GAPDH 0.092 0.195 0.197 0.157 0.159 0.162
HPRT 0.092 0.176 0.152 0.157 0.370 0.377

Exp_1 and Exp_2 contained 3 groups: Control, PSD96 and SR24. 
Exp_3 contained 2 groups: control and TSD6.
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Expression of BDNF in the brainFigure 2
Expression of BDNF in the brain. A. The expression of BDNF was quantified by RTqPCR in the brain of controls (C), ani-
mals subjected to paradoxical sleep deprivation for 96 hours (PSD96), and animals subjected to PSD and sleep recovery for 24 
hours (SR24). B. The expression of BDNF was also evaluated in animals subjected to total sleep deprivation for 6 hours (TSD6) 
and compared to the control (C). The relative expression fold changes were calculated using the 2-ddCt method for each refer-
ence gene or the normalization factor (NF) generated by GeNorm software. Error bar represents standard error of the mean. 
* p < 0.05 compared to control, # p < 0.05 compared to PSD (ANOVA followed by Tukey's post hoc test).
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PSD96 group compared to the controls (p < 0.05) but the
magnitude of fold changes was somewhat different
between each analysis (Figure 3A). In SR24 group, the
mean relative expression was increased by at least two fold
compared to the controls, but it did not reach statistical
significance, probably due to high individual variability
(p > 0.05).

TSD6 was not sufficient to produce similar increase in
GPD1 expression, and all reference genes and NF gener-
ated consistent results (p > 0.05, Figure 3B).

Discussion
Effects of sleep deprivation on the expression of classical 
reference genes
Given the importance of the genetic aspect of sleep
research, substantial efforts were made to identify genes
involved in sleep-wake cycles. These studies reported that
sleep deprivation can modify the expression of genes fre-
quently used as internal controls for RTqPCR [20]. For
instance, short-term sleep deprivation altered the expres-
sion of cytoskeletal proteins such as beta-actin and tubu-
lin in two independent proteomic analyses [12,21].
Furthermore, Biswas and colleagues showed that the
amount of actin and tubulin decreased in the brains of
paradoxical sleep-deprived rats and culminated in neuro-
nal apoptosis [22]. GAPDH is another classical reference
gene that requires careful analysis before using in sleep-
related gene expression studies. Several studies demon-
strated that sleep deprivation or sleep disorders alter glu-
cose metabolism and enhance the risk for type 2 diabetes
[7]. Thus, despite lack of direct evidence, the strong corre-
lation between sleep and glucose metabolism suggests
that the expression and/or activity of GAPDH might be
modulated by the sleep-wake cycle.

These findings strongly justified the importance of the
present study and our data demonstrated that the most
commonly used reference genes presented stable expres-
sion throughout the total or paradoxical sleep deprivation
period, as the M values were below the cut-off previously
suggested for stable genes [17].

Expression of BDNF in the brain
Brain-derived neurotrophic factor (BDNF) is an impor-
tant mediator of memory and cognition and its expression
is strongly modulated by neuronal activity [15]. In our
previous study, we observed that the PSD96 increased the
expression of BDNF in cortical tissue [16] while other
group showed that BDNF expression was reduced by 6 h
of PSD in the cerebellum and brainstem [23]. In the
present study, we did not observe any alteration of BDNF
expression in paradoxical sleep deprived rats. Conceiva-
bly, distinct regulation of BDNF expression may occur
throughout the different regions of the brain and there-

fore, the use of whole brain might mask the effect of PSD
on specific region of the brain. On the other hand, the
intracerebral injection of exogenous BDNF in rat
increased the time spent in NREM sleep without affecting
REM sleep [24]. These data spare the possibility of BDNF
expression being minimally affected by PSD in many
areas of the brain corroborating the present findings.

In contrast, the short-term total sleep deprivation appears
to up-regulate the expression of BDNF in various regions
of the brain [15,25-27] suggesting that the use of whole
brain would not interfere with the gene expression results.
As expected, an overall increase in mean relative expres-
sion of BDNF was observed in TSD6 group, but the statis-
tical significance was achieved only when B2M, GAPDH
or NF were used for the normalization, although all tested
reference genes presented stable expression stability.
These data illustrated that use of single reference gene can
produce flawed results leading to misinterpretation of
physiological events. Thus, the application of multiple ref-
erence genes in RTqPCR is desirable for reliable results.

Expression of GPD1 in blood
The reduction of sleep time and augment of obese indi-
viduals in modern life are concurrent trends indicating
that sleep-wake cycle has strong impacts on the energy
metabolism [28]. GPD1 is a NAD+ dependent cytosolic
enzyme that generates key intermediates between glucose
and lipid metabolism [19]. In our previous studies, we
found that GPD1 expression was increased in cortex and
blood of rat subjected to PSD96 compared to controls
[16]. Although the increase of GPD1 expression followed
by PSD96 was confirmed in this study, short-term TSD
did not have significant effect on the expression of this
gene. Several studies have demonstrated that the altera-
tion of biochemical parameters can occur even after short
period of sleep deprivation [29-31]. Thus, the increase of
GPD1 expression occurred after PSD96 can be a secondary
effect of prolonged paradoxical sleep loss. Finally, the fact
that both BDNF and GPD1 expression was differently
modulated by PSD and TSD demonstrates the importance
of distinct protocols of sleep deprivation in order to dis-
criminate events that happen in each stage of sleep at dis-
tinct time course.

Conclusion
This study demonstrated that the most commonly used
reference genes are suitable for gene expression studies
that involve sleep deprivation. However, more reliable
results of RTqPCR can be obtained when multiple refer-
ence genes are used.
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Expression of GPD1 in the bloodFigure 3
Expression of GPD1 in the blood. A. The expression of GPD1 was measured by RTqPCR in the blood of controls (C), ani-
mals subjected to paradoxical sleep deprivation for 96 hours (PSD96) and animals subjected to PSD and sleep recovery for 24 
hours (SR24). B. The expression of GPD1 was also evaluated in animals subjected to total sleep deprivation for 6 hours (TSD6) 
and compared to the control (C). The relative expression fold changes were calculated using the 2-ddCt method for each refer-
ence genes or the normalization factor (NF) generated by GeNorm software. Error bar represents standard error of the 
mean. * p < 0.05 compared to control (ANOVA followed by Tukey's post hoc test).
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Methods
Selection of reference genes
In order to avoid possible co-regulation of expression,
genes belonging to distinct biological pathways were
selected as follows: beta-actin (b-actin), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), beta-2-microglobulin
(B2M) and hypoxanthine guanine phosphoribosyl transferase
(HPRT). Brain derived neurotrophic factor (BDNF) and glyc-
erol-3-phosphate dehydrogenase 1 (GPD1) were used to val-
idate the reference genes. Gene accession numbers as well
as primer sequences are listed in Table 1.

Sleep deprivation
Adult male Wistar-Hannover rats were assigned to three
groups (3 animals/group): home-cage controls (C), rats
subjected to PSD for 96 hours (PSD96) [32], and rats sub-
jected to PSD96 with an additional sleep recovery period
of 24 hours (SR24). In the second experiment, 9 animals
per group were used and an additional group of 8 animals
was included for a total sleep deprivation of 6 hours
(TSD6). During the PSD, the rats were placed on narrow
circular platforms located inside a tank (143 cm × 41 cm
× 30 cm), which is filled with water of ~1 cm depth. When
rats reach the paradoxical phase of sleep, they fall into the
water, due to muscle atonia, and wake up. This protocol
causes deprivation of all sleep stages on the first day, and
then becomes more selective leading to the complete loss
of paradoxical sleep on subsequent days. TSD was
achieved by gentle handling method as described else-
where [33]. The rats used in this study were maintained
and treated according to the ethical and practical guide-
lines for the use of laboratory animal. The experimental
protocol has the approval of the Ethical Committee of
UNIFESP (CEP N. 05/434). Maximum efforts were taken
to use the smallest, but enough number of animals in the
experiments to ensure unambiguous and reliable statisti-
cal analysis and data interpretation.

Tissue collection and total RNA extraction
The animals were decapitated immediately after sleep
deprivation and sleep recovery procedure. The brain was
rapidly dissected, flash frozen in liquid nitrogen, and then
stored at -80°C until RNA extraction. Total RNA was
extracted from whole tissues using Trizol reagent (Invitro-
gen) according to the manufacturer's instructions. After
decapitation, neck blood samples (2.5 mL) were collected
in PaxGene RNA collection tubes (PreAnalytiX) according
to the manufacturer's recommendations. Two hours after
collection, total RNA was extracted using PaxGene blood
RNA isolation kit (PreAnalytiX) with minor modification
[34]. After RNA extraction, RNA was treated with DNaseI
and the quality of the RNA was evaluated by electrophore-
sis in agarose gel.

Reverse transcription and quantitative Real time PCR 
(RTqPCR)
Total RNA was reverse transcribed into cDNA using Super-
Script™ III Platinum® Two-Step qRT-PCR kit with SYBER®

Green (Invitrogen). Reverse transcription was performed
at 25°C for 10 min, 42°C for 50 min and then 85°C for
10 min. Each cDNA sample was then used as a template
for real-time PCR amplification using the same kit (Invit-
rogen). Amplification and detection was performed using
an Applied Biosystems 7500 Real-Time PCR system
(Applied Biosystems) according to the manufacturer's
instructions using a two-stage cycle (95°C for 15 s and
60°C for 1 min) repeated 40 times followed by a dissoci-
ation stage.

Data analysis
Gene stability was evaluated using GeNorm algorithm,
freely available for download http://medgen.ugent.be/
~jvdesomp/genorm/. The GeNorm algorithm relies on
the principle that the expression ratio of two ideal refer-
ence genes must be constant between samples [14]. This
software calculates the variation of this ratio for all two-
by-two combinations of reference genes. Lower M values
indicate higher expression stability, with 0.5 being a sug-
gested cut-off for stable genes [17]. The expression fold
changes of BDNF and GPD1 were calculated by the 2-ΔΔCT

method for each reference genes [18], or by the 2-ΔCT

method using the geometric mean of suitable reference
genes as the normalization factor [14]. Unpaired t-test or
Analysis of variance (ANOVA) followed by Tukey post
hoc test was conducted on the relative expression values
using software GraphPad Prism (v 4.00).

List of abbreviations
(b-actin): Beta-actin; (B2M): beta-2-microglobulin; (BDNF):
brain derived neurotrophic factor; (C): Control group; (Ct):
threshold cycle; (GAPDH): glyceraldehyde-3-phosphate
dehydrogenase; (GPD1): glycerol-3-phosphate dehydrogenase
1; (HPRT): hypoxanthine guanine phosphoribosyl transferase;
(PSD96): paradoxical sleep deprivation for 96 hours;
(RTqPCR): reverse transcription quantitative polymerase
chain reaction; (SR24): sleep recovery for 24 hours;
(TSD6): total sleep deprivation for 6 hours.
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