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Abstract
Background: Alternative splicing is one of the key mechanisms that generate biological diversity. Even though 
alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs) of mRNAs, the understanding of the 
significance and the regulation of these variations is rather limited.

Results: We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional 
effector of the Hedgehog (HH) signaling pathway. In addition to identifying novel transcription start sites, we 
demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the 
mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 
1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. 
Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-
skipped mRNA variants being most effective.

Conclusions: Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the 
mouse HH signaling cascade.

Background
Alternative splicing and transcriptional initiation are key
mechanisms, which generate diversity both at the mRNA
and protein levels. Recently, several independent research
efforts revealed that more than 90% of human genes are
alternatively spliced [1,2], and about 50% of both human
and mouse genes have multiple alternative promoters [3].
Additionally, a genome-wide screening of alternative
splicing and transcriptional initiation estimated that a
significant number of genes are differentially spliced
within 5' and 3' untranslated regions (UTRs) [4]. More-
over, another genome-wide analysis identified 324 out of
17897 genes that display associations between flanking
single nucleotide polymorphisms (SNPs) and gene
expression/alternative transcription, demonstrating the
regulatory effects of genetic variation in human popula-
tions [5]. These non-bias/genome-wide analyses high-
light the importance of alternative splicing/promoter

usage as general mechanisms of regulation control in
mammalian cells.

UTRs are considered to influence gene expression by
modulating mRNA stability and/or translational effi-
ciency. Consequently, UTR heterogeneity for a specific
gene is likely to have a differential impact on protein
expression [6]. Analysis of variable 5' UTRs in the TGF-
beta, BRCA1 and MDM2 genes, have indicated that the
shorter UTR variants are translated more efficiently [7].

The Hedgehog (HH) signaling pathway plays a central
role in embryonic development and adult tissue homeo-
stasis [8]. Abnormal activation of the pathway has been
associated with various cancers in skin, brain, lung, diges-
tive tract, prostate and pancreas [9-12]. The mechanistic
details of the HH signaling pathway, which is generally
thought to be well conserved in evolution, have mostly
emerged from studies in Drosophila. In the absence of
HH ligands, the PTCH receptor inhibits the activity of
the 7-pass transmembrane protein Smoothened (SMO),
which acts as a positive regulator of the pathway. Interac-
tion of HH ligands with PTCH relieves the inhibitory
control of PTCH on SMO, allowing the GLI transcription
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factor to dissociate from the negative regulator Suppres-
sor of Fused (SUFU) and translocate into the nucleus,
activating target genes. In mammals there are three paral-
ogues of HH proteins, Sonic HH, Indian HH and Desert
HH, two PTCH receptors, PTCH1 and PTCH2, and three
GLI transcription factors, GLI1, GLI2 and GLI3. Addi-
tionally, splice variants of several HH signaling compo-
nents have been identified [13], in line with an earlier
report, which, by the use of genome-wide RNAi, high-
lighted the importance of alternative splicing in this path-
way [14].

GLI1 was originally identified as a highly expressed
gene in human glioma [15] and acts as a downstream
effector of the HH signaling cascade, mediating the tran-
scriptional response [16]. GLI1 is also a target gene of the
HH pathway, resulting in a positive feedback loop. More-
over, overexpression of GLI1 in transgenic mice leads to
the induction of basal cell carcinomas and trichoepithe-
liomas [17]. Alternative splicing in the GLI1 5' UTR
regions of human and mouse has earlier been reported by
Wang and Rothnagel [18]. Recently, we and others have
demonstrated the occurrence of functional, differential
splicing events in the coding regions of human GLI1
[19,20].

In this study, novel mouse Gli1 mRNA variants, whose
transcriptional initiation is further upstream of the
reported exon 1 sequence, were identified. Additionally,
we obtained evidence that genetic variation is a key deter-
mining factor for the alternative splicing events in the
Gli1 5' UTRs, which have functional implications on
translational efficiency.

Results
Identification of novel transcription start sites in the mouse 
Gli1 gene
In a previous report, we have shown the presence of novel
human GLI1 splice variants, which skip exons 2 and 3
[19]. Moreover, Wang and Rothnagel had earlier reported
the skipping of exon 1A and/or exon 1B in mouse Gli1
[18]. To clarify the splicing pattern of the mouse Gli1
gene at its 5' end, Rapid Amplificaton of cDNA Ends
(RACE) analysis using reverse primers within exon 4
(Table 1) was performed on RNA extracted from NIH3T3
cells. Surprisingly, we did not detect any RACE product
below the expected size of a transcript that includes exon
1, 1A, 1B, 2, 3 and 4 (Figure 1A, white triangle). On the
contrary, the major products observed were significantly
longer. This finding implies the presence of other exon(s)
and/or the extension of known exons. Sequence-verifica-
tion of the RACE products demonstrated the existence of
novel transcriptional start sites (TSSs) for exon 1, which
are located approximately 350 (TSS-L) or 290 (TSS-M)
nucleotides upstream of the reported Gli1 TSS, TSS-S
(Figure 1B, DDBJ: AB234616 and AB234617). Addition-

ally, we analyzed Gli1 exon-skipping events in the HH
signaling responsive NIH3T3 cells, with or without treat-
ment by the Smo agonist SAG [21], the constitutively
activated Ptch1-/- mouse embryonic fibroblast (MEF) cell
line, and C57BL/6 mouse embryos at 8.5 and 9.5 days
post coitum (d.p.c.) by nested PCR with primer sets
within exon 1 and 4 (Table 1). Inclusion of all exons (1-
1A-1B-2-3-4) and exon 1B skipping were the two splicing
events detected in the analyzed samples (Figure 1C).
Interestingly, the ratio of these two variants was different
depending on context. Moreover, we could neither detect
exon 2 and 3 skipping, as observed in human [19], nor
skipping of both exons 1A and 1B [18] in these samples or
in a mouse cDNA panel (data not shown). Additionally,
the recently reported exon 3-partial exon 4 skipping in
human [20], was not observed, even though the reverse
primers used hybridized to the retained exon 4 segment.
Note that all mouse Gli1 mRNA variants observed are
characterized by unique 5' untranslated regions (5'
UTRs), but a common translational start site in exon 2.

Expression profiles of Gli1 variants in embryos, cell lines, 
and medulloblastoma tumors
To compare the expression pattern of the 5' Gli1 variants,
we performed real-time RT-PCR with PCR primers
designed to specifically detect the individual Gli1 tran-
scripts (Figure 2A and Table 2). As a control, we also used
another primer set, from exon 11 to exon 12, to detect the
3' end of the Gli1 mRNAs.

Initially, we confirmed Gli1 variant expression in the
C57BL/6 mouse embryos at 8.5 and 9.5 d.p.c. by real-time
RT-PCR (Figure 2B). Similarly to the nested PCR analysis
shown in figure 1B, Gli1 variants skipping exon 1B
(ΔE1B) were more abundant to the ones including exon
1B (E1B) in both embryonic stages. Furthermore, the
Cycle threshold (Ct) values of Gli1 variants that were
transcribed from TSS-L and TSS-M (L+M) were nearly
equal to the Ct values of either the ΔE1B or the exon 11 to
12 (E11-12) transcripts. This finding highlighted that the
majority of the mouse Gli1 mRNAs initiate at upstream
TSSs in the embryo, in agreement with the previous
observations of the NIH3T3 cell line (Figure 1B). Addi-
tionally, to elucidate the in vivo distribution of these Gli1
transcripts in developing embryonic compartments, we
analyzed 9.5 d.p.c. mouse embryos by whole mount in
situ hybridization (See additional file 1). All probes used
showed comparable distribution patterns of the variants,
as also did a Gli1 3' end control riboprobe. These data
suggested that the expression of all the alternative Gli1
mRNAs was likely to be controlled by similar develop-
mental mechanisms.

To test the impact of HH signaling activation on the
expression of the Gli1 variants, real-time RT-PCR analy-
sis was performed in the HH signaling responsive
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NIH3T3 cells and wild type MEFs (wtMEFs), and the
constitutively active Sufu-/- and Ptch1-/- MEFs (Figure 3A
and 3B). In NIH3T3 cells, the E1B variant was more
abundant than the ΔE1B, and HH signaling activation,
elicited by SAG, could not alter the predominance of E1B.
On the other hand, wtMEFs expressed the ΔE1B variant
as the major Gli1 transcript and, in line with NHI3T3

cells, exhibited a parallel upregulation of the alternative
Gli1 variants by HH signaling activation, resulting in an
expression pattern similar to that of Sufu-/- MEFs. More-
over, Ptch1-/- MEFs equally expressed both the E1B and
the ΔE1B variants, even though the Ct value of the L+M
transcripts was similar to that of SAG-treated wtMEFs or
Sufu-/- MEFs. Importantly, the wtMEFs and Sufu-/- MEFs,

Figure 1 Alternative transcripts of the mouse Gli1 gene. (A) Detection of alternative transcription start sites (TSS). RACE analysis was performed 
on NIH3T3 cells using reverse primers within exon 4 of the Gli1 gene followed by agarose gel electrophoresis. White, black and gray triangles indicate 
transcripts, which are transcribed from known (TSS-S) or novel (TSS-M and TSS-L) TSSs, respectively. Note that the RACE product indicated by the black 
triangle also includes a minor variant that is transcribed from TSS-L and skips exon 1B. The MspI digested pBR322 molecular weight markers are also 
shown. (B) Genomic structure of the mouse Gli1 5' UTR region. Exons are represented by black boxes with the splicing pattern indicated. The white 
box represents the newly identified exon 1 region, which is transcribed from the novel TSSs (black and gray arrows). The exon 1B skipping event is 
highlighted by a bold line. The initiator methionine codon (ATG) in exon 2 is also shown. (C) Analysis of skipping events of Gli1 5' exons in NIH3T3 cells, 
Ptch1-/- MEFs and mouse embryos. Cells were treated either with methanol (MeOH) or the Smo agonist, SAG. Alternative splicing was evaluated by 
RT-PCR analysis using primer sets within exons 1 and 4. The individual PCR products detected on agarose gel electrophoresis were sequence-verified. 
The MspI digested pBR322 molecular weight markers are also shown.

Table 1: Primer sequences for RACE and nested PCR analysis

Forward primers in exon 1 Reverse primers in exon 4

1st PCR 5'-AGTTTCCAGCCCTGGACCAC 5'-GAGGTCCGGATTACGGTTT

Nested PCR 5'-ACCGCGCCCCGACGGAG 5'-ATCAGAAAGGGGCGAGATGG
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Figure 2 Expression of Gli1 variants during embryogenesis. (A) Schematic representation of the variant-specific primer sets for real-time RT-PCR 
used to detect the alternative Gli1 transcripts. Gray, black and white arrows indicate the alternative transcription start sites TSS-L, TSS-M and TSS-S of 
the Gli1 mRNAs. The initiator methionine codon (ATG) in exon 2 is also shown. The positions of the forward and reverse primers for detection of the 
L (E1L-F, E1L/M-R), L+M (E1M-F, E1L/M-R), ΔE1B (E1A-F, E1B-R), and ΔE1B (E1A-F, E2/1A-R) transcripts are indicated by white and black triangles, re-
spectively. Exons are shown by boxes. (B) Gli1 expression profile in mouse embryos. The L, L+M, E1B, and ΔE1B variants were quantified by real-time 
RT-PCR using SYBR Green in two 8.5 d.p.c. and two 9.5 d.p.c. mouse embryos. Data are presented as relative Ct (Cycle threshold, the number of PCR 
cycles that reaches an arbitrary threshold) values (ΔCt), that is the Ct of the individual transcripts minus the Ct of the housekeeping gene Arp. A loga-
rithmic plot of the 2-ΔCt values is shown. The error bars indicate the standard deviation and the statistical significance between the L and L+M as well 
as the E1B and ΔE1B transcripts is shown (*: p < 0.05, **: p < 0.01, Student's t-test).
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which were ΔE1B variant-dominant, were both estab-
lished from C57BL/6 mice, NIH3T3 cells, which were
E1B variant-dominant were from BALB/c mice, while
Ptch1-/- MEFs, which had comparable expression of both
variants, were from mice with mixed genetic background
[22].

Overactivated HH signaling and Gli1 overexpression
play a central role in medulloblastoma tumorigenesis
[23]. This prompted us to investigate the expression pro-
file of the Gli1 variants in medulloblastomas from the
tumor-prone Sufu+/-Trp53-/- mice maintained on a
C57BL/6 genetic background (Heby-Henricson, K, Berg-
ström, Å, Rozell, B, Toftgård, R, Teglund, S, unpublished)
by using real-time RT-PCR (Figure 3C). As anticipated,
the expression of all Gli1 variants was remarkably upreg-
ulated in the tumor samples compared to normal cerebel-
lum, but the relative expression pattern of the variants
was not apparently influenced by tumorigenesis. Addi-
tionally, the ΔE1B variant was found to be expressed at
higher levels than E1B, as in wtMEFs and Sufu-/- MEFs.
Similar upregulation patterns of the Gli1 transcripts were
also observed in medulloblastomas from Ptch1+/- mice
maintained on a C57BL/6 genetic background (See addi-
tional file 2).

These results are therefore suggesting that neither HH
signaling activation nor tumorigenesis preferentially
affect the regulation of expression of the individual Gli1
variants. On the other hand there is a strong influence of
the mouse strain/genotype. C57BL/6 mice predominantly
express the ΔE1B variant, BALB/c mice the E1B variant,
while mice with mixed genetic background have compa-
rable expression of both. In line with these observations,
a mouse cDNA panel from BALB/c mice consistently
showed increased expression of the E1B relative to the
ΔE1B variant (data not shown).

Identification of SNP and SINE polymorphisms involved in 
mouse Gli1 exon 1B inclusion/skipping
Since our results clearly indicated that the relative expres-
sion pattern of the Gli1 variants was not affected by
either HH signaling or tumorigenesis, but instead the

ΔE1B to E1B ratio was well correlated with the mouse
strains analyzed, variations in the genomic DNA
sequence, such as single nucleotide polymorphisms
(SNPs), could be involved. To identify differences among
the mouse strains that influence the expression of these
variants, we PCR amplified and sequenced the Gli1 exon
1B genomic region from NHI3T3, wtMEFs and Ptch1-/-

MEFs. Three SNPs in the vicinity of the donor site of the
intron 1B were identified, one of which affected the con-
served 5' intronic dinucleotides (Figure 4, DDBJ:
AB520987 - AB520989). NIH3T3 cells, which predomi-
nantly express the exon 1B-included variants, have the
canonical GT dinucleotide sequence at the intronic
boundary. On the other hand, wtMEFs, as well as Sufu-/-

MEFs (data not shown), which predominantly express the
exon 1B-skipped variants, have a GC intronic dinucle-
otide, implying a less efficient exon definition and conse-
quently an increased exon skipping [24]. Interestingly,
Ptch1-/- MEFs are apparently heterozygous, containing
both the GT and the GC alleles, in line with the compara-
ble expression of the exon 1B-included and -skipped vari-
ants. Moreover, to further assess the effects of these SNPs
on splicing efficiency, the GT and GC alleles were ana-
lyzed with two different splice site predictors, Human
Splicing Finder [25] and NNSPLICE 0.9 [26]. Both pro-
grams demonstrated that the SNPs affect the prediction
of splice sites, with the GT allele predicted to contain the
expected 5' splice site, while this was not the case for the
GC allele.

Additionally, C3H/10T1/2 cells, which are generally
used for HH signaling-dependent differentiation assays
[27], were analyzed. Interestingly, no exon 1B inclusion
could be detected by either real-time RT-PCR (Figure 5A)
or nested PCR with primers within exon 1 and exon 4
(data not shown). Moreover, sequencing the exon 1B
genomic region identified two insertions, a SINE B1
repeat in intron 1A and importantly, a SINE B2 repeat in
exon 1B, which expanded the exonic sequence from 119
to 328 nucleotides (Figure 5B and 5C, DDBJ: AB520990).
Consequently, the expanded exon 1B sequence, in combi-

Table 2: Primer sequences for real-time RT-PCR

Forward primers Reverse primers

L 5' -CATAAGCCCGGCACCCCCTCTCTA 5' -ACCCGCGAGAAGCGCAAACTTTTT

L+M 5' -ACGAGGGAAGTGAGCGGGAAGAGC 5' -ACCCGCGAGAAGCGCAAACTTTTT

E1B 5' -TTGTCCGCGCCTCTCCCACATACTA 5' -GGGCAGAAGCAGCCGTTCAGTCTT

ΔE1B 5' -TTGTCCGCGCCTCTCCCACATACTA 5'-TCAGGGAAGGATGAGGGGACCTG

E11-12 5' -CCCATAGGGTCTCGGGGTCTCAAAC 5'-GGAGGACCTGCGGCTGACTGTGTAA

Arp 5'-TGCACTCTCGCTTTCTGGAGGGTGT 5'-AATGCAGATGGATCAGCCAGGAAGG

Gapdh 5'-GGTGTGAACGGATTTGGCCGTATTG 5'-CCGTTGAATTTGCCGTGAGTGGAGT

http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB520987
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB520989
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB520990
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Figure 3 Upregulation of Gli1 variants by HH signaling activation/tumorigenesis. Gli1 expression profile in NIH3T3 cells (A), mouse embryonic 
fibroblasts (MEFs) (B), and medulloblastoma tumors (C). Gli1 variants in NIH3T3 cells or wild type MEFs (wtMEFs), treated with methanol (MeOH) or the 
Smo agonist, SAG, Ptch1-/- or Sufu-/- MEFs, and normal cerebellum (N1 and N2) or medulloblastoma tumors (MB1 and MB2) from Sufu+/-Trp53-/- mice 
were analyzed by real-time RT-PCR. Data are presented as relative Ct (Cycle threshold) values (ΔCt), that is the Ct of individual transcripts minus the Ct 
of the housekeeping genes Arp /Gapdh. A logarithmic plot of the 2-ΔCt values is shown. The PCR primer sets to detect the variants are the ones depicted 
in Figure 2A. The error bars indicate the standard deviation and the statistical significance between the L and L+M as well as the E1B and ΔE1B tran-
scripts is shown (*: p < 0.05, **: p < 0.01, Student's t-test). ND, non-detected, the signal is below the sensitivity limit of the assay. Note that although 
real-time RT-PCR can not detect the ΔE1B variant without SAG treatment in NIH3T3 cells, standard nested RT-PCR (Figure 1B) does, but apparently in 
a non-quantitative pattern.
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nation with the presence of the GC intronic dinucleotide,
further reduced exon definition, resulting in complete
exon skipping [24]. These findings are therefore provid-
ing support to the notion of the importance of sequence
polymorphisms in defining splicing patterns.

Functional analysis of the Gli1 5' untranslated regions
Since the expression pattern of Gli1 variants was
depended on the genetic background and was maintained
as a fingerprint in different mouse strains, the possibility
of regulatory roles for the alternative 5' UTRs was consid-
ered [6]. This was further supported by the fact that the 5'
UTRs of mouse Gli1 have high GC content and are pre-
dicted to form multi- and long stem-loop structures (See
additional file 3). To address the functional impact of
these untranslated regions on the Gli1 mRNA transcripts,
six 5' UTRs, namely L, M, S, LΔ1B, MΔ1B and SΔ1B (Fig-
ure 6A), were cloned in front of the Renilla luciferase
gene of the psiCHECK2 vector. These constructs were
transiently transfected into wtMEFs or NIH3T3 cells,
with or without signaling activation by SAG treatment,
and into Ptch1-/- or Sufu-/- MEFs. In all cases, elimination

of 5' segments, from L to M and then to S resulted in
higher luciferase activity (Figure 6B, C, D and See addi-
tional file 4). Additionally, skipping of exon 1B had a sig-
nificant positive effect on the luciferase activity in the
case of the L and S constructs, but was less pronounced
for the M construct. This implies that not only 5' UTR
length but also alterations in secondary structure, elicited
by exon 1B skipping, may influence heterologous protein
production. Moreover, HH signaling activation had no
apparent influence on the observed luciferase activities.
Collectively, these data suggest that the choice of tran-
scription start site, in combination with exon 1B inclu-
sion/skipping, influences the capacity of the Gli1 variants
to produce a protein product.

Finally, we investigated whether this differential capac-
ity of the 5' UTRs is due to modulations of the mRNA sta-
bility or the translational efficiency. To achieve this, the
endogenous Gli1 levels in wtMEFs were enriched by
SAG, followed by inhibition of the process of transcrip-
tion with actinomycin D treatment and subsequent
mRNA measurements. The results revealed no signifi-
cant differences in mRNA stability among the Gli1 vari-
ants (See additional file 4). Thus, it may be suggested that
the alternative 5' UTRs are likely to regulate Gli1 protein
levels via translational mechanisms.

Discussion
In this report the 5' UTR regions of the mouse Gli1 gene
were analyzed, resulting in the identification of two novel
transcription start sites and sequence polymorphisms,
which control exon 1B inclusion/skipping. Our findings
demonstrate that SNPs in the 5' splice site of intron 1B
and a SINE B2 insertion in exon 1B have major effects in
determining the expression ratio of the 5' UTR variant
mRNAs, which distinctly influence translational effi-
ciency (Figure 7).

Initially, 5' RACE and RT-PCR analysis clearly showed
5' variations in the Gli1 transcripts (Figure 1). However,
the previously reported exon 2 - exon 3 skipping in
human normal tissues/tumor cell lines [19], exon 3 - par-
tial exon 4 skipping in human cancer cells and especially
glioblastomas [20] and exon 1A - exon 1B skipping in
mouse [18] could not be detected. Moreover, the 5' RACE
analysis revealed the presence of some minor transcripts,
apparently transcribed from alternative TSSs (data not
shown, DDBJ: AB232673 - AB232676). As their expres-
sion levels were quite low, we chose to focus on the rela-
tively abundant Gli1 variants in order to analyze the
impact of alternative transcripts on HH signaling.

We demonstrated that exon 1B inclusion/skipping is
intimately related with SNPs in the donor site of intron
1B (Figures 1, 2, 3, 4 and 5). The GT allele contains a
canonical 5' splice site sequence, allowing efficient exon
1B definition and consequently enhances the inclusion of

Figure 4 Identification of genetic variations in the Gli1 exon 1B 
genomic region. Electropherograms of the sequence analysis of the 
region spanning the 5' splice site of intron 1B. Genomic DNA from 
NIH3T3 cells, Ptch1-/- MEFs and wtMEFs was PCR amplified and the 
products were analyzed by direct sequencing. The dotted line indi-
cates the exon 1B/intron 1B boundary. The triangles highlight the SNP 
positions. Note the presence of the canonical GT intronic dinucleotide 
in NIH3T3 cells, the substitution to GC in wtMEFs, and the heterozy-
gous GT/GC pattern in Ptch1-/- MEFs.

http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB232673
http://getentry.ddbj.nig.ac.jp/cgi-bin/get_entry.pl?AB232676
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Figure 5 The exon 1B structure/function in C3H/10T1/2 cells. (A) Lack of the exon 1B-included Gli1 variants in the C3H/10T1/2 cell line. Gli1 vari-
ants in C3H/10T1/2 cells, treated with methanol (MeOH) or SAG, were analyzed by real-time RT-PCR. Data are presented as relative Ct (Cycle threshold) 
values (ΔCt), that is the Ct of individual transcripts minus the Ct of the housekeeping gene Arp. A logarithmic plot of the 2-ΔCt values is shown. The PCR 
primer sets used are the ones depicted in Figure 2A. The error bars indicate the standard deviation and the statistical significance between the L and 
L+M as well as the E1B and ΔE1B transcripts is shown (*: p < 0.05, **: p < 0.01, Student's t-test). ND, non-detected, the signal is below the sensitivity 
limit of the assay. (B) Comparison of the genomic structure of the Gli1 exon 1B region in C3H/10T1/2 and wtMEF cells. The white box indicates the 
exon 1B, while the orange and blue boxes the "AAAAATCACCTAGG" and "GGGATGTTTCTTCTT" sequences, respectively, which are duplicated by the 
B1 SINE (orange rhomb) and B2 SINE (blue rhomb) insertions in C3H/10T1/2 cells. The vertical black bars in C3H/10T1/2 represent the intronic bound-
aries of exon 1B. The scale of the genomic sequence, 100 base pairs, is indicated by a double arrow. (C) Genomic sequence of the exon 1B region in 
C3H/10T1/2 cells. The SINE insertions and the duplicated regions are highlighted by the same colors as in (B). The triangles indicate the intronic bound-
aries of exon 1B.
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Figure 6 Functional differences of the Gli1 5' UTR variants. (A) Schematic representation of the six Gli1 5' UTRs analyzed. The alternative TSSs, the 
individual exons and the initiator methionine codon are represented as in Figure 2A. Bold lines indicate the six 5' UTR regions, L, M, S, LΔ1B, MΔ1B, 
SΔ1B, which were cloned into the NheI site, upstream of the Renilla luciferase coding region (black box) of the psiCHECK2 vector as described in meth-
ods. (B, C, and D) Luciferase activity of the six reporter constructs after transfection into NIH3T3 cells, Sufu-/- MEFs, and Ptch1-/- MEFs, respectively. Trans-
fected NIH3T3 cells were treated with methanol (MeOH) or SAG. The Renilla luciferase activity was normalized relative to that of the Firefly luciferase. 
The error bars indicate the standard deviation. The statistical significance of the differences among the Gli1 5' UTR constructs is shown. (*: p < 0.01, 
ANOVA - Bonferroni test. The white star indicates significance relative to all other data sets).
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exon 1B, as observed in NIH3T3 cells. On the other hand,
the GC allele has a weaker 5' splice site sequence, result-
ing in a less efficient exon 1B definition and therefore
promotes the skipping of exon 1B, as observed in wtMEFs
and Sufu-/- MEFs. Moreover, Ptch1-/- MEFs, which are
heterozygous and contain both the GT and GC alleles,
expressed comparable levels of the exon 1B-included and
-skipped variants.

Since the relative expression pattern of the Gli1 variants
was not affected by either HH signaling activity (Figure
3A and 3B) or tumorigenesis (Figure 3C)/embryogenesis
(Figure 2B), the identified polymorphisms are primary
determinants in controlling the splicing regulation of the
Gli1 5' UTRs. SNPs/mutations affecting splicing have
been reported for consensus splice sites, but were also
identified at significant distances from splice junctions
[28,29]. Our own analysis of the 284 reported mutations
of PTCH1 revealed the presence of 20 intronic splice
changes [30]. These findings highlight the importance of
SNPs/mutations in altering splicing patterns, as these
may occur not only at canonical splice sites but also at
exonic/intronic splicing enhancers/silencers.

Additionally, evolutionary comparisons indicated that
GC is likely to represent the ancestral intronic dinucle-
otide at the 5' splice site of intron 1B, since it is conserved
in rat and other species, with the GT substitution and the

SINE B2 insertion occurring at later stages (See addi-
tional file 5 and Figure 5). Interestingly, in the primate lin-
eage the exon 1B region is characterized by an Alu
insertion. These facts suggest that this genomic segment
might be genetically unstable and a hotspot for transpo-
son insertion.

5' UTRs are known to regulate protein expression via
modulation of mRNA stability and/or translational effi-
ciency [6]. We analyzed the alternative Gli1 5' UTRs in
various cell lines and found that 5' end shortening as well
as skipping of exon 1B increased their capacity for heter-
ologous protein expression (Figure 6). These observations
are in line with previous claims purporting that shorter 5'
UTRs of Gli1 are more capable of efficient translation
[18], and support the notion that alternative events in 5'
UTRs of mammalian genes are likely to contribute to the
regulation of translation [31]. Moreover, mRNA stability
assays of the alternative Gli1 transcripts revealed that
variations in the 5' UTRs did not affect the pattern of
RNA degradation, and consequently, these untranslated
sequences regulate Gli1 protein levels by modulating
translational efficiency. Interestingly and in line with
these observations, Hedgehog signaling-dependent
mouse models for medulloblastoma development are
apparently influenced by the Gli1 genotype. Deletion of
one Ptch1 allele in C57BL/6 mice, which are homozygous
for the GC allele, results in a higher incidence of medullo-
blastomas compared to mice with a mixed genetic back-
ground [32].

Secondary structure prediction of the Gli1 5' UTRs by
Mfold highlighted the presence of a long stem-loop struc-
ture in L and M that is retained in MΔ1B but not in LΔ1B
and may have a role in the differential translatabilities of
MΔ1B versus LΔ1B (See additional file 3). However, free
energy, ΔG, calculations were not fully in line with the
capacity for translation. In addition, we examined
whether two other parameters, G-quadruplex (G4) DNA/
RNA structures and upstream ORF (upORFs), might
influence the translational efficiency (See additional file
6). Nucleotide region 251-294 has a G4 motif sequence
G3-N1-7-G3-N1-7-G3-N1-7-G3, and nucleotide region 22-55
has a similar sequence with a potential G4 structure.
Moreover, the genome wide G4 DNA database QuadBase
[33] predicted an antisense G4 motif at nucleotide region
322-360. G4-structures are formed not only on DNA but
also on RNA [34], and a G4 motif on the NRAS mRNA
was reported to suppress translation [35]. Additionally,
the exon 1B-included variants, L, M and S, have an
upORF in the same frame as the Gli1 ORF (fully
upstream, 46 encoded amino acids), while the exon 1B-
skipped variants, LΔ1B, MΔ1B and SΔ1B, have an upORF
(38 encoded amino acids) that overlaps with the Gli1
ORF. Although no significant differences between fully
upstream and overlapping upORF could be identified in a

Figure 7 Schematic model of the modulation of Gli1 protein lev-
els by genetic variation. The expression ratio of the Gli1 5' UTR vari-
ants is dependent on polymorphisms that affect the inclusion/
skipping of exon 1B. The presence or not of the canonical intronic di-
nucleotide GT at the 5' splice site of intron 1B has a major impact in 
controlling exon 1B splicing. Additionally, the skipped variants have a 
higher translational efficiency, highlighting the importance of strain 
differences as modulators of HH signaling-dependent/independent 
Gli1 protein levels.



Palaniswamy et al. BMC Molecular Biology 2010, 11:32
http://www.biomedcentral.com/1471-2199/11/32

Page 11 of 13
recent report, long cap-to-upORF distances were found
to increase translational inhibition [36]. Wang and Roth-
nagel have used a 5' UTR construct (alfa-UTR), which is
almost equivalent to the S construct in this report,
mutated at four ATG codons and apparently eliminating
46 amino acids upORF that we have identified, and
observed increased reporter activity, in line with the
above predictions [18]. Thus, the combinations of
upORFs with G4 structures in the Gli1 5' UTRs are likely
to have a role as mediators of the observed patterns of
translation.

Conclusions
Our findings highlight the complex posttranscriptional
regulation of the mouse Gli1 oncogene. mRNA variants
with alternative 5' UTRs were identified, mechanisms
that control their expression levels were dissected, and
the differential impact of the 5' UTRs on protein synthe-
sis was determined. Moreover, the demonstrated strain
differences in regulatory controls of this oncogene sug-
gest that these may have a role in modulating tumor sus-
ceptibility in mouse models.

Methods
RACE and PCR
5' RACE was performed by using the GeneRacer kit (Life
Technologies, CA, USA), with mouse Gli1 exon 4 reverse
primers (MWG-Biotech, Ebergsberg, Germany) (Table
1). The RACE products were analyzed on a 4% NuSieve
3:1 agarose gel (FMC BioProducts, ME, USA) and veri-
fied by PCR direct sequencing or sequencing of TA-
clones in the pGEM-T vector (Promega, WI, USA). Pairs
of initial and nested primers were also designed within
mouse Gli1 exon 1, as shown in Table 1, and used in com-
bination with the RACE exon 4 primers. The nested PCR
analysis and sequence-verification were carried out as
described in previous reports [37,38].

Cell culture
The murine fibroblast cell lines NIH3T3, Ptch1-/- MEFs
[39], wtMEFs, Sufu-/- MEFs and C3H/10T1/2 were cul-
tured as described before [37,40,41]. Cells were treated
with the Smo agonist SAG at a concentration of 100 nM,
with the medium changed to low serum (0.5% FBS or 1%
FBS for wtMEFs), and allowed to grow for an additional 2
days.

Mice
The use of animals was approved by the Stockholm South
Animal Ethics Committee. The mice were kept at the ani-
mal facility of the Karolinska University Hospital, accord-
ing to local and national regulations. The Sufu+/-Trp53-/-

mice were generated by intercrossing Sufu+/- [41] and
Trp53+/- mice [42]. The Ptch1+/- mouse strain has been
described previously [22]. Both the Sufu+/-Trp53-/- and
the Ptch1+/- strains were maintained on a C57BL/6
genetic background.

Isolation of cerebellum cells
Normal cerebella and medulloblastoma tumors from
Sufu+/-Trp53-/- mice were digested with papain, triturated
to obtain single-cell suspensions and then centrifuged
through a 35%-65% Percoll gradient. Cells from the 35%-
65% interface were suspended in Neurobasal medium
(Life Technologies, CA, USA). Isolated granule cells were
counted and checked with a microscope.

RNA isolation, and real-time RT-PCR
Total RNA was isolated from cells, tissues and mouse
embryos, using the RNeasy kit (Qiagen GmbH, Hilden,
Germany) according to the manufacturer's protocol.
Real-time RT-PCR was performed as described before
[19]. Dissociation curves were generated after each PCR
run to ensure that a single, specific product was ampli-
fied. The results were analyzed with the comparative
Cycle threshold (Ct) method. For normalization, we used
the expression level of Glyceraldehyde-3-phosphate
dehydrogenase (Gapdh), and/or Acidic ribosomal protein
(Arp). The PCR primers are shown in Table 2.

Analysis of polymorphic variants
Genomic DNA was amplified with pairs of initial and
nested primers, which are flanking the exon 1B region
and are listed in Table 3. The PCR products were purified
(Qiagen), and directly sequenced (MWG-Biotech). The
obtained sequences were compared with the Mus muscu-
lus chromosome 10 genomic contig, strain C57BL/6J
(GenBank: NT_039500).

Functional analysis of 5' UTRs
For generating the 5' UTR constructs, we PCR amplified
the selected regions by using specific RACE products as
templates, with the primers (MWG-Biotech) listed in
Table 4. The PCR products were then digested with the
NheI restriction enzyme and cloned upstream of the

Table 3: Primer sequences for polymorphism analysis

Forward primers Reverse primers

1st PCR 5'-TGGCGTGCCCTTCTGTTTCTTTGA 5'-TCCTGCAGGTTTCTGGGAGGTGTG

Nested PCR 5'-CGGGGAGACGCTCTGCTCTGAAGT 5'-TGGAGCCAGGTCTTTGAATGGGGAAT

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NT_039500
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Renilla luciferase open reading frame of the psiCHECK2
vector (Promega, GenBank: AY535007), which is under
the control of the SV40 early enhancer/promoter. All
constructs were verified by sequencing using BigDye Ter-
minator v1.1 Cycle Sequencing Kits and an ABI prism
DNA sequencer (Life Technologies).

Two hundred ng of each of the 5' UTR constructs were
transfected into NIH3T3 or wtMEF cells, with or without
SAG treatment initiated 24 hours after transfection, and
Ptch1-/- or Sufu-/- MEFs using the FuGENE6 (Roche Diag-
nostics, Basel, Switzerland) transfection reagent. The
activities of Renilla and Firefly luciferases were deter-
mined by using the dual-luciferase reporter assay system
(Promega) with a FB12 Luminometer (Berthold Detec-
tion System, Pforzheim, Germany) or an Infinite M200
(Tecan, Männedorf, Switzerland) according to the manu-
facturer's recommendations. The experiments and indi-
vidual measurements were performed at least twice.

Additional material

Abbreviations
Gli1: Glioma associated oncogene 1; HH: Hedgehog; Ptch: Patched; Smo:
Smoothened; Sufu: Suppressor of Fused; UTRs: untranslated regions; RT:
reverse transcriptase; MeOH: methanol; SAG: Smo agonist; Ct: cycle threshold;
Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Arp: acid ribosomal pro-
tein; d.p.c.: days post coitum; L: long 5' UTR transcript; M: medium 5' UTR tran-
script; S: short 5' UTR transcript; LΔ1B: L transcript with skipped exon 1B; MΔ1B:
M transcript with skipped exon 1B; SΔ1B: S transcript with skipped exon 1B;
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