Silva et al. BMIC Molecular Biology 2011, 12:40
http://www.biomedcentral.com/1471-2199/12/40

BMC
Molecular Biology

RESEARCH ARTICLE Open Access

Profile of small interfering RNAs from cotton
plants infected with the polerovirus Cotton

leafroll dwarf virus

Tatiane F Silva', Elisson AC Romanel?, Roberto RS Andrade’, Laurent Farinelli®, Magne @steras®, Cécile Deluen?,

Régis L Corréa”, Carlos EG Schrago? and Maite FS Vaslin'

Abstract

Polerovirus, family Luteoviridae.

while Dcl2 appeared to be down-regulated.

Background: In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into
viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The
profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses.
However, nothing is known about the vsRNAs produced during infections of members of the economically
important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a
population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus

Results: Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the
VvsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher
frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the
22-nt class of small RNAs was predominant. During infection, cotton Dc/ transcripts appeared to be up-regulated,

Conclusions: This is the first report on the profile of sSRNAs in a plant infected with a virus from the family
Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the
main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the
virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the
causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for
understanding the molecular mechanisms involved in this and related diseases.

Background

The RNA silencing pathway controls important biological
processes in plants, including regulation of gene expression
during development, heterochromatin formation, hormone
signaling, metabolic processes, and stress responses, as well
as being an important antiviral defense mechanism [1]. In
plants, antiviral silencing can be triggered by the presence
of viral double-stranded RNAs (dsRNA), which are gener-
ated by the viral RNA polymerase as an intermediate in
genomic replication and transcription, or are predicted to
form as secondary structures along single stranded viral
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genomic RNA (ssRNA) [2]. Both structures are recognized
by Dicer-like (DCL) ribonucleases and are processed into
virus-derived small interfering RNAs (vsRNAs) that vary in
length from 21 to 24 nucleotides (nt) [3-5]. These vsRNAs
are then loaded into Argonaute (AGO)-containing com-
plexes known as RNA-induced silencing complexes
(RISCs), which promote the degradation of both genomic
and subgenomic viral RNAs [6,7].

DCL ribonucleases are present in both monocot and
dicot plants. Arabidopsis thaliana contains four DCLs
(AtDCLs1-4) [8], while the Populus and rice genomes
encode five and six DCLs, respectively [9]. The diversity
associated with Dicer ribonucleases, as well as other
silencing-related proteins such as AGO, strongly suggest
that several silencing pathways have evolved in plants.
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Correspondingly, in Arabidopsis, at least six silencing
pathways have been identified, and the four DCLs
involved are known to act hierarchically. For example,
there are 21-nt vsRNAs and other small RNAs (sRNAs)
associated with post-transcriptional silencing of endogen-
ous genes generated by AtDCL4. In the absence of
AtDCL4, 22-nt vsRNAs are produced by AtDCL2, and in
the absence of both AtDCL4 and AtDCL2, 24-nt vsRNAs
are produced by AtDCL3 [10-12]. Thus, AtDCL2-4 play
essential roles in mediating the antiviral defenses of Ara-
bidopsis. In contrast, AtDCL1 is mainly associated with
the production of microRNAs, which represent a class of
important regulatory RNAs derived from hairpin-like
endogenous transcripts [13].

All of the four Dicer proteins expressed in Arabidopsis
are usually present in other plants, also [14] (Additional
file 1, figure s1). Correspondingly, 21-, 22-, and 24-nt
vsRNAs have been detected in many plant hosts follow-
ing infection [15]. However, based on the hierarchical
roles of DCL4 and DCL2 in antiviral silencing, 21-nt
vsRNAs are by far the most abundant class of sSRNA
found in plants infected with RNA or DNA viruses, fol-
lowed by 22-nt vsRNAs [15-18]. Previous studies have
shown that the accumulation of vsRNAs is affected by
viral suppressors of gene silencing [11,19].

Suppressor proteins can directly bind vsRNAs [20-23],
or inhibit key proteins of the gene-silencing pathway
[24-26]. For example, the Polerovirus PO protein and the
P38 protein from Turnip crinkle virus (TCV) target
AGO1, an important antiviral Argonaute protein
[11,24,27-30]. Studies have shown that PO preferentially
targets AGO1, leading to its degradation, but does not
affect the sSRNA-RISC complex [26]. A similar action has
been suggested for the P38 protein, which binds to AGO1
and may prevent the assembly of RISC. However, unlike
PO, P38 does not affect the stability of AGO1 [30]. By pre-
venting the association of AGO1 with RISC, P38 has the
potential to destabilize a complex homeostatic network
involving AGO1, microRNAs, and the four Dicer pro-
teins. This would be consistent with the preferential accu-
mulation of 22-nt vsRNAs observed following infection
with TCV [30].

In this study, vsRNAs derived from cotton plants (Gos-
sypium hirsutum) infected with Cotton leafroll dwarf
virus (CLRDV) (genus, Polerovirus; family, Luteoviridae)
were deep-sequenced and characterized. CLRDV is trans-
mitted by the aphid, Aphis gossypii, and is the causal
agent of cotton blue disease [31], which occurs in cotton
crops world-wide. Consistent with other members of the
same family, CLRDV is phloem-restricted and its genome
consists of a single strand, positive sense, non-polyadeny-
lated RNA (5.8 kb) containing six open reading frames
(ORFs) [32]. This is the first report of vsRNAs derived
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from a member of the family Luteoviridae and the first
report of vsRNAs in cotton plants.

Results

Characterization of CLRDV-derived sRNAs

To characterize the vsRNAs produced during CLRDV
infection, sSRNAs obtained from cotton-infected and unin-
fected plants were cloned and deep-sequenced using the
Hlumina platform. A total of 10,566,377 and 9,480,917
reads were sequenced from systemic leaves harvested at 5
dpi from infected and uninfected plants, respectively
(Figure 1A). Reads ranging from 18 to 26 nt were mapped
in sense and antisense orientations to the viral genome.
Only sequences showing no mismatches were regarded as
CLRDV vsRNAs in the infected library. In total, 640,325
viral-derived sRNA reads were identified, covering almost
the entire sequence of the genome. In the uninfected
library, only 1,967 reads matched with the CLRDV gen-
ome (corresponding to 0,025% of the 18-26 nt reads
sequenced). Of the vsRNA reads identified in infected
plants, 51,607 were unique (Figure 1A). Equivalent
amounts of sense and antisense vsRNAs were found in the
CLRDV-infected cotton library, suggesting that vsRNAs
derived from the cleavage of dsRNA are processed by
Dicer ribonucleases (Figure 1B). To further characterize
the vsRNA library, the frequencies of redundant and
unique CLRDV-derived sRNAs ranging from 18 to 26 nt
were analyzed (Figure 1). In both sets of analyses, 22-nt
vsRNAs were the most abundant. For example, 22-nt
redundant vsRNAs (Figure 1C) represented 36.61% of the
total vsRNAs sequenced, followed by 23-nt and 21-nt
vsRNAs (21.22% and 15.53%, respectively). For the unique
vsRNAs (Figure 1D), 22-nt represented 17.74% of the total
vsRNAs sequenced, followed by 21-nt and 23-nt vsRNAs
(15.42% and 15.23%, respectively). These data were con-
firmed through the deep sequencing, in an independent
channel, of an additional cotton-infected RNA sample
(Additional file 2 figure s2), generating 15,415,107 reads,
of which 498,367 matched with the CLRDV genome.
Together, these results suggest that the cotton homologue
of DCL2 (GhDCL2) may be the predominant Dicer ribo-
nuclease involved in their biogenesis.

To determine whether the 22-nt reads are predominant
only in the pool of vsRNAs or whether this is the domi-
nant class among small RNAs of cotton, we compared
the overall profile of small RNAs between the infected
and the uninfected libraries. In both libraries there was
an abundance of the 24-nt class among the endogenous
sRNAs, followed by the 21-nt class (Figure 2A and 2B).
However, in infected plants, there were decreased levels
of the 24- and 21-nt classes (Figure 2B) indicating that
CLRDV infection may decrease the production of endo-
genous SRNAs.
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Figure 1 Analysis of the CLRDV-vsRNA population. (A) Diagram showing the stepwise computational extraction of vsRNA reads from small
RNAs libraries recovered from infected and uninfected leaves. (B) Accumulation of sense and antisense vsRNAs reads. Percentage for each class
of vsRNA from the infected library is shown within the pie graph. (C) Histogram representation of total and (D) unique vsRNA reads in each size

class.
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The high accumulation of the endogenous 24-nt
sRNAs, followed by 21-nt sRNAs, are consistent with
sRNA profiles in other plants (33,34). These findings
indicate that the cotton RNA silencing machinery
responsible for biogenesis of endogenous or viral sSRNAs
does not tend to produce 22-nt sequences. Therefore,
the high levels of 22-nt CLRDV-vsRNA seem to be a
result of the antiviral RNA silencing mechanism or a
specific CLRDV-host interaction.

In Arabidopsis, the 5- terminal nucleotide partially
determines the preference of sSRNAs for AGO proteins.
Therefore, the distribution of 5- terminal nucleotides was
determined for the sequenced vsRNAs (Figure 3). For all
three types of CLRDV-vsRNAs characterized (i.e., 21-,
22- and 23-nt), cytosine was the most commonly occur-
ring nucleotide at the 5- terminus (32.09%, 42.27%, and
36.65%, respectively), while guanine was the least com-
mon (14.98%, 9.62%, and 8.12%, respectively). In contrast,
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Figure 2 Size distribution of CLRDV-vsRNA and endogenous sRNAs. Histograms compare the distribution of 18-26-nt total sSRNA reads with
vsRNAs obtained from uninfected (A) and CLRDV-infected (B) cotton plants. Only 0.025% of total sSRNA obtained from uninfected plant matched
to the CLRDV genome (data not shown).

24-nt CLRDV-vsRNAs often had adenine at the 5- termi-
nus (53.24%), or guanine (23.26%). For comparison,
Arabidopsis AGO1 has a 5- nucleotide preference for
uracil, AGO2 and AGO4 have a preference for adenine,
and AGO5 preferentially loads sSRNAs with cytosine at
the 5- terminus [33-35]. Therefore, the results of the pre-
sent study suggest that CLRDV-vsRNAs can be poten-
tially loaded by multiple AGO-containing complexes.
However, 21-23 nt CLRDV-viRNAs may be preferentially
loaded by AGO5, while 24-nt CLRDV-vsRNAs would be
loaded by AGO 2 and/or AGOA4.

Distribution of vsRNA abundance

To examine the spatial distribution and sequence diver-
sity of the viral sSRNAs identified, redundant (Figure 4B)
and unique (Figure 4C) 21-24 nt vsRNA sequences were
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Figure 3 Characterization of vsRNAs 5’ -terminal nucleotide.
Relative abundance of four distinct 5" -terminal nucleotides in 21-
24-nt vsRNAs in CLRDV-infected plant.

mapped to the CLRDV genome. For both classes of
sequences, the distribution of CLRDV-vsRNAs along the
genome was non-uniform, with most of the vsRNAs
accumulating in the 3- region of the genome. This part
of the genome encodes structural proteins and proteins
that assemble subgenomic RNAs during infection [31].
The greatest numbers of redundant reads were associated
with position 5049-5070, with 398,897 reads identified.
Overall, this region of the genome was highly repre-
sented. In addition, a large number of reads mapped to
OREF5, a region encoding an aphid-transmission protein.
However, after the unique vsRNAs were aligned with the
genome (Figure 4C), there were regions associated with
an absence of vsRNA reads. When the same alignment
was performed and up to two mismatches were allowed,
only positions 4150-4170 did not match with any vsSRNA
reads (data not shown). Therefore, it is possible that this
region may have a structural characteristic that makes it
less accessible to Dicer ribonucleases, although sequen-
cing artifacts cannot be ruled out. Furthermore, the hot-
spots for vsRNAs that were found to be associated with
the 3- region of the CLRDV genome might be generated
by the massive accumulation of viral subgenomic RNAs
(sgRNA) observed in leaves [15,36].

An analysis of the unique reads that mapped to the
CLRDV genome indicated that all Dicer ribonucleases
were able to access the entire viral genome. Similar
amounts of 21-24-nt vsRNAs corresponding to sense
and antisense strands of viral RNA (Figure 4C) were
present in our library, reinforcing that virus-derived
dsRNAs are the main source of vsRNAs. Furthermore,
peaks of both the abundance (Figure 4B) and diversity
(Figure 4C) of 21-24 nt reads showed similar patterns of
distribution along the genome. These results suggest
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that all DCL ribonucleases contribute to the generation
of vsRNAs with similar substrate affinities and target the
same regions of the genome. However, the fact that the
22-nt class of vsRNAs was the most prominent class
supports the hypothesis that GhDCL2 may play a role
in the generation of CLRDV-vsRNA.

Expression of Cotton DCL ribonucleases during infection
Assays of TCV infection have detected a high abun-
dance of 22-nt vsRNAs [11,19,30] associated with the
silencing suppressor protein, P38. During infection, P38
inactivates AGO1 by down-regulating miR162. As a
result, low levels of miR162 directly and/or indirectly
affect transcript levels of D¢/, 3, and 4 [30]. To deter-
mine whether a similar mechanism might be activated
in cotton-infected plants, we analyzed the expression
levels of mature miR162 and Dcls in CLRDV-infected
and uninfected plants.

In contrast with TCV infection of Arabidopsis, qPCR
experiments detected almost three-fold higher levels of
Gh-miR162 in infected versus uninfected cotton plants
(Figure 5A). Furthermore, in silico analysis of miRNAs
in the deep-sequencing libraries from infected versus
uninfected libraries showed similar results, with Gh-
miR162 levels slightly up-regulated during CLRDV
infection (data not shown). The levels of mRNAs for
cotton DCLs were assayed, and there were no significant
differences in the levels of Dcll (GhDcll) and Dcl3
(GhDcl3) transcripts (Figure 5B) between uninfected and
infected plants. In contrast, GhDcl4 was up-regulated
during infection, while GhDcl2 was down-regulated
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(Figure 5B). Taken together, these results suggest that
the high levels of 22-nt vsRNAs produced in CLRDV-
infected plants may represent a mechanism distinct
from that previously described for TCV infections.

Discussion

This is the first report of the characterization of small
RNAs produced from a member of the genus Polerovirus,
family Luteoviridae. The profile of vsRNAs generated in
cotton plants infected with CLRDV revealed some inter-
esting features regarding their biogenesis. For example,
both sense and antisense orientations of CLRDV-derived
sRNAs accumulated to similar levels (Figure 1B). How-
ever, several other studies have found that sense vsRNAs
accumulate to higher levels in some hosts [16,17,23]. In
those cases, strand biases are usually attributed to prefer-
ential processing of highly structured single-stranded
genomic viral RNAs by Dicer ribonucleases [15,23].
Despite these differences and considerable experimental
efforts, however, the existence of a direct correlation
between vsRNA hot-spots and structured regions of geno-
mic viral RNAs has never been proven [15]. The accumu-
lation of equivalent amounts of sense and antisense
CLRDV-vsRNAs observed in the present study supports
the hypothesis that CLRDV-dsRNAs, which are generated
by viral RNA polymerases during genome replication or
by the activity of host RNA-dependent RNA polymerases
[2], are the main substrates for Dicer ribonucleases. Since
the PO silencing suppressor protein from Polerovirus was
already shown to inhibit production of secondary vsRNAs
in 35S-promoter-driven agroinfiltration assays [27,28,37],
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it may be speculated that the main substrate of cotton
DCLs during CLRDV infection is probably the replicative
intermediate forms of viral genomic RNAs. However, the
mechanism of PO protein action in the formation of the
secondary siRNAs during virus infection remains unclear.

Overall, the distribution profile of CLRDV-vsRNAs
within the genome varied considerably. High vsRNA den-
sities were identified in regions coding for structural pro-
teins, especially in the ORF5 region (Figure 4). Previously,
it was shown that genes encoding structural proteins in
the family Luteoviridae are expressed from subgenomic
RNAs (i.e., sgRNA1 and sgRNA2) [38]. Moreover, studies
of the Polerovirus, Potato leafroll virus (PLRV), also identi-
fied two sgRNAs associated with the 3- block of the viral
genome [39]. The transcription of sgRNA1 provides for
expression of ORFs 3, 4, and 5, while that of sgRNA2
(~800 nt) encodes two proteins located within the 3- prox-
imal half of ORF5. Since sgRNAs are highly expressed dur-
ing the infection cycle, an over-accumulation of vsRNAs
derived from this region of the genome might be due to a
greater availability of dsSRNA intermediate templates for
processing. Accordingly, the hot-spot of vsRNAs mapped
to ORF5 might be due to the expression of sgRNA2,
which is also derived from this region of the genome.
Although the synthesis of sgRNA2 by CLRDV has not pre-
viously been reported, the ACAAAA motif present at the
5- end of sgRNA1 and sgRNA?2 from other Poleroviruses
[40] is also present in the ORF5 of CLRDV (position
4821-4828) (data not shown). Based on these results, it is
possible that sgRNA2 is produced by CLRDV.

Depending on their length and 5- identity, sSRNAs are
selectively loaded into multiple AGO complexes [33,34].
Previous studies have shown that plant virus-specific
sRNAs beginning with uracil or adenine are preferen-
tially loaded into AGO1, AGO2, and AGO4 [15-17]. In
fact, AGO1 and AGO?2 are required for the anti-viral
silencing pathway in Arabidopsis [41-43]. However, 21-
23 nt CLRDV-vsRNAs usually have a cytosine at the 5-
terminal position (Figure 3), indicating that they may be
loaded into a cotton homologue of AGO5. Although the
AtAGOS5 has no detectable anti-viral function against
Cucumber mosaic virus (CMV) [8,43,44], CMV-vsRNAs
have been detected in AtAGO5 immunoprecipitates,
indicating that the protein may act in the biogenesis of
secondary vsRNAs [35]. Moreover, a predominance of
5- terminal cytosines has been observed for some
viroid-derived sRNAs [45]. In contrast, most 24-nt
CLRDV-vsRNAs have adenine at the 5- terminal (Figure
3), indicating that they can be loaded into cotton AGO2
and AGO4 homologues. In Arabidopsis, the association
between 24-nt sRNAs and AGO4 has been well-charac-
terized as a mediator of transcriptional silencing for
transposons and repeated sequences [41]. In addition,
the decreased number of vsRNAs that start with guanine
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is correlated with the absence of AGO proteins that
might otherwise have an affinity for those sRNAs.

The balance between antiviral silencing and suppres-
sion mechanisms can directly influence the accumulation
of vsRNAs within infected plants. While the functions of
the four DCL proteins present in Arabidopsis are well
characterized, Dicer ribonucleases from other species,
including cotton, remain largely unstudied. However, if
the mechanism(s) associated with DCL ribonucleases is
conserved between cotton and Arabidopsis, then the pre-
dominance of 22-nt vsRNAs associated with CLRDV
infection would be hypothesized to be the result of
GhDCL2 activity. Although 22-nt CMV-vsRNAs pro-
duced by AtDCL?2 are poor effectors of antiviral defense
in Arabidopsis [43], other studies have detected a predo-
minant population of 22-nt vsRNAs following infection
with certain plant viruses and viroids [11,15,19,36,45].
For example, Cymbidium ring spot virus (CymRSV) and
TCV infections are associated with an abundance of 22-
nt vsRNAs, which seem to be related to the activity of
the suppressor proteins P19 and P38 [11,15,19]. P19 can
specifically sequester 21-nt duplex sSRNAs [46], while P38
can indirectly block AtDCL4 activity by suppressing
AGO1 function [30]. During TCV infection in Arabidop-
sis, AtDCLI levels are indirectly increased due to the
P38-mediated down-regulation of microRNAs, including
miR162, a negative regulator of AtDcll transcripts [47].
Since AtDCLI negatively regulates AtDcl4 and AtDcl3
[48], over-accumulation of AtDCL1 generates a deficit in
the levels of AtDCL4 and AtDCLS3, leaving dsRNAs more
accessible to AtDCL2 [30]. The Polerovirus PO suppressor
protein is also able to destabilize AGO1 [24,27,28].
Although the activity of CLRDV PO has not yet been
tested, the F-Box-like domain necessary for silencing that
is conserved among PO sequences from other members
of the genus is also conserved in CLRDV (data not
shown). Thus, CLRDV PO has the potential to similarly
affect cotton Dicer ribonucleases during the infection
process. However, in this study, there were no significant
changes in the levels of GhDcll, GhDcl2, and GhDcl3
transcripts in infected plants (Figure 5B). Furthermore,
GhDcl4 transcripts and Gh-miR162 were up-regulated
(Figure 5A and 5B). The up-regulation of Dc/4 has been
observed in other viral infections [49], but the levels of
mature miR162 are inconsistent with what was observed
during TCV infection [30]. It is possible that differences
in tissue tropism between TCV and CLRDV, and/or dif-
ferences in the silencing machinery of the host, account
for the observed differences between the two viruses.

Members of the genus Polerovirus are restricted to the
phloem cells of their hosts. Therefore, DCL activity in
response to viral dsSRNA may be cell-type dependent. Small
RNAs derived from Hop stunt viroid (HSVd) infections in
cucumber plants showed different sizes in different tissues
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[45]. For example, most of the sSRNAs from infected whole
leaves were 21-nt long, while those derived from phloem-
sap were more frequently 22 nt in length. Although trans-
gene-induced silencing in phloem cells of Arabidopsis is
triggered by AtDCL4 [50], a difference in the affinity or
expression of Dicer ribonucleases, or other silencing-
related proteins such as dsRNA-binding proteins in com-
panion cells, could possibly explain the tissue-dependent
shift in SRNA size.

The production of vsRNAs following virus infection
can vary depending on the host. For example, sSRNAs
derived from Bamboo mosaic virus are mainly 21 nt in
length in Arabidopsis, but 22 nt in Nicotiana benthami-
ana. Therefore, these data suggest that DCL recruitment
for vsRNA production is a host-dependent process [36].
This is the first report of a sSRNA profile for cotton
virus-infected plants. Further research is required to
confirm whether the vsRNA profile observed here
results from a viral silencing suppressor protein, or from
factors such as phloem-restriction or cotton-specific fac-
tors that can activate an anti-viral silencing pathway.

Conclusions

This is the first high-throughput sequencing of a mem-
ber of the Luteoviridae family, CLRDV, from virus-
infected cotton plants. This study shows that RNA silen-
cing systems against CLRDV result in the production of
22-nt sRNAs as the predominant sRNA size class. All
vsRNAs, independently of the size, and that these are
derived mainly from the 3- region of the viral genome.
The sequence data of sense and antisense vsRNAs
strongly suggest that dsSRNA molecules are the main
source of the vsRNAs. During CLRDV infection, we
observed up-regulation of GhDcl4 and down-regulation
of GhDcl2 transcripts, which are the major DCLs in
antiviral defense in the model plant Arabidopsis. There
is still much to learn about the molecular mechanisms
underlying the prevalence of the 22-nt CLRDV-vsRNAs.

Methods
Sample preparation and sequencing
Fifty-day-old cotton (Gossypium hirsutum) plants (culti-
var FM966; Fibermax966) that are susceptible to cotton
blue disease were infected with CLRDV using the viruli-
ferous aphid, Aphis gossypii. Aphids were placed on
older true leaves and removed 24 h after infestation.
Systemic leaves (i.e., representing the youngest comple-
tely expanded leaves) were harvested 5 days post-infec-
tion (dpi). The same leaves were harvested from mock-
infected plants as the control. Total RNAs were
extracted from systemic leaves using the Invisorb Spin
Plant RNA Mini Kit (Invisorb®).

The quantity and quality of RNA samples obtained
were determined by spectrophotometry (Nanodrop ND-
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1000, Thermo Fisher Scientific) and agarose gel electro-
phoresis (Additional file 3, figure s3), respectively. Sys-
temic infections were confirmed using nested (RT)-PCR
assays to detect the viral capsid protein-encoding gene
as previously described [51]. RNA samples were precipi-
tated in ethanol and sequenced at the Fasteris Life
Science Co. (Geneva, Switzerland) with an Illumina
Genome Analyzer (Illumina, San Diego, USA). Small
RNA libraries were prepared according to a modified
[llumina protocol. Briefly, small RNAs of 15-30 nt were
purified on an acrylamide gel; the 3- IDT miRNA clon-
ing linker (Integrated DNA Technologies, San Diego,
USA) and then the 5- Illumina adapters were single-
stranded ligated with T4 RNA ligase. The constructs
were purified again on an acrylamide gel to remove
empty adapters and then reverse-transcribed and PCR-
amplified. The primers used for cDNA synthesis and
PCR were designed to insert an index in the 3- adapter.
The libraries were quality controlled by cloning an ali-
quot into a TOPO plasmid and capillary sequencing 4-8
clones. High-throughput sequencing was performed on
a Genome Analyzer GAIIx for 38 cycles plus 7 cycles to
read the indexes. After demultiplexing and adapter
removal, 10.5 million pass filter reads were obtained in
the library.

All the deep sequencing libraries obtained are depos-
ited at GEO (Gene Expression Omnibus) under the
number GSE311062 http://www.ncbi.nlm.nih.gov/geo/
info/submission.html

Data mining of the sRNA pool

CLRDV-derived sRNAs sequences were identified using
a local BLAST database of the CLRDV-PV1 isolate
genomic sequence (accession number HQ827780).
Library characterization and mapping to the viral gen-
ome were performed using locally developed Perl
scripts. Further calculations and statistical analyses were
performed using R 2.7.1 software (R Foundation for Sta-
tistical Computing).

Real-time analyses
Primers used to amply the DCLs genes and Gh-miR162
are listed in Table 1.

To measure expression levels of mature Gh-miR162, a
stem-loop quantitative RT-PCR technique was used as
previously described [52].

Complementary DNA was produced using the Rever-
tAid First Strand cDNA Synthesis Kit (Fermentas) and
0.5 pg of total RNA previously treated with DNase I
(Fermentas). cDNAs of the cotton DCL genes were
synthesized by adding 100 uM Oligo (dT24V) primer.
For synthesis of Gh-miR162 cDNA, 100 uM specific pri-
mer was added (Table 1). The presence of residual
genomic DNA in the RNA samples was verified by PCR
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Table 1 Primer sequences and amplicon characteristics of DCLs, XTH, and Gh-miR162

Gene Forward primer sequence (5'- Reverse primer sequence (5’-3) Amplicon size Efficiency + SD* R2 Locus accession
3') (bp) number
DCL1 AACCCTGGGTGGTGTCCCCTG ATGCCCCC GGCTGGCTC 132 0928647 + 0.9858 ES804646.1
0.0293724
DCL2 GATCGCTATCATGCTTCTCCGCAG TGGGGAACCAAGAAGACAGCGAA 81 0.99522 + 0.9903 DW488144
0.00361129
DCL3 ATGTCCACATGCCCCCTGAGCT GGCCAACATTAAGGACTCCAGCCG 113 0997162 + 0.9646 DR462994
0.0071986
DCL4 GCTTCCAAGCGGCAACAGCATT AGGATGCACAATCGCCTGAAGGAG 186 0.992603 + 0.9706 DT568872
0.0051324
Gh- GCGGCGGAGCTATTTGGAGACG  GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCTGGAT 72 0.884982 + 0.032819 0.8519 -
miR162
XTH GGAAAGGGTGACAGGGAACA GGCTGGAG GGGTATGG 173 and 392** - - AY189971.2

*Efficiency + standard deviation (SD) generated by the Miners software. ** in DNA sample.
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of the control gene xyloglucan endotransglycosylase
(XTH) (accession number AY189971.2), using primers
spanning two exons and RNA samples that were not
reverse-transcribed (RT) (Additional file 4, figure s4).

Synthesized cDNAs were diluted 50 times and 2.5 puL of
these dilutions were analyzed by quantitative PCR (qPCR).
Assays were performed using a 48-well plate on an Step
One Real-Time PCR system (Applied Biosystems) with
Maxima™ SYBR Green/ROX qPCR Master Mix (Fermen-
tas), following the manufacturer’s instructions. The cycling
conditions were as follows: 10 min at 95°C for initial dena-
turation, followed by 40 cycles of denaturation at 95°C for
15 s and annealing/extension at 60°C for 30 s. Results
were normalized against cotton genes for polyubiquitin
(accession number DW505546) and the catalytic subunit
of phosphatase 2A (accession number DT545658) [53].
The reference genes were validated experimentally in spe-
cific CLRDV-infected samples (Additional file 5, figure s5).
All reactions were performed using two independent bio-
logical samples and each sample was analyzed in triplicate
wells. The mean value of each Ct triplicate was used for
further calculations by the 2*“* method. Each PCR run
included a no-template control containing water instead
of cDNA.

The efficiency values of the DCLs and Gh-miR162 pri-
mers sets were estimated for each experimental set by
Miner software [54], and are listed in Table 1. Amplifica-
tion of a specific transcript was confirmed by the appear-
ance of a single peak in the melting curve followed by
agarose gel electrophoresis (Additional file 6, figure s6).
The correlation coefficient (R2) was calculated for each
transcript (Table 1). The values shown are averages
obtained from three biological replicates, and relative
expression levels were obtained by comparing infected
plants with uninfected plants.

Additional material

Additional file 1: Phylogenetic relationship between cotton Dicer
ribonucleases and their homologues in other species. A, B, C, and D,
Unrooted Neighbor-joining tree constructed with DCL1, DCL2, DCL3, or
DCL4 homologue sequences, respectively. Species used in the phylogeny
were as follows: Arabidopsis thaliana (At), Gossypium hirsutum (Gh),
Medicago truncatula (Mt), Oryza sativa (Os), Physcomitrella patens (Pp),
Populus trichocarpa (Pt) and Vitis vinifera (V). Dashes below each tree
represent amino acid regions used in alignment. Arrows represent
fragments analyzed by gPCR. Bootstrap values from 1,000 replicates were
used to assess the robustness of the trees. All DCL sequences, except
cotton DCLs, were downloaded from Phytozome 6.0 http://www.
phytozome.net/. ESTs from G. hirsutum containing incomplete DCL
sequences were obtained from the NCBI database. The GhDCL1
consensus sequence was constructed with ESTs DT564382.1 (Helicase
domain), and ES804646.1, together with DW238156.1 (two RNAse Il and
one Double stranded RNA binding (dsRB) domain). The GhDCL2
consensus sequence was constructed from two ESTs: DW484144 (DEAD-
like helicases superfamily (DExD) domain) and ES806737 (second RNAse
Il domain). The GhDCL3 sequence was constructed from the ESTs
DW477937 and DR462994 (PAZ and RNAse Ill domains, respectively). The
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GhDCL4 consensus sequence was constructed with ESTs ES841096 (PAZ
domain) and DT568872 (RNAse Ill domain). Smart database [55] was used
to identity DCL domains from their amino acid sequences.

Additional file 2: Analysis of biological duplicates of CLRDV-vsRNA
populations. Histogram showing total (A) and unique (B) vsRNA reads
in each size class. Biological duplicates were subjected to deep
sequencing in independent channels.

Additional file 3: Total RNA quality check. Quality and integrity of
each RNA sample was checked by electrophoresis on 0,8% non-
denaturing agarose gels, as well as by absorbance at 260 and 280 nm.

Additional file 4: Confirmation of DNA-free status of RNA samples.
DNA contamination was checked by 2.0% agarose gel electrophoresis of
products obtained in the xyloglucan endotransglycosylase (XTH) gene
amplification reaction. Different sized fragments are amplified from
genomic DNA (392 bp) and mRNA transcripts from cDNA (173 bp) with
the designed primers. Before reverse transcription (-RT) reactions, RNA
samples were used for PCR reactions and showed no ampilification.
Infected; RNA samples from plants independently infected with CLRDV.
Uninfected; two biologically independent RNA samples from uninfected
plants. DNA; genomic DNA amplification (positive control).

Additional file 5: Determination of reference genes for use in these
experimental conditions. Expression stability values of polyubiquitin
(UBI), the catalytic subunit of phosphatase 2A (PP2A), and 18S ribosomal
RNA (18S) candidate reference genes obtained by different algorithms.
(A) Normfinder. (B) Delta CT method. (C) BestKeeper. (D) Genenorm. In
Gennorm analysis, 0.15 is the cut-off value below which the inclusion of
an additional reference gene is not required [56]. All analyses were
performed via the Cotton EST Database http://www.leonxie.com/index.
php.

Additional file 6: Test of specificity of RT-qPCR primers. (A) Melting
curves of the four GhDcls and Gh-miR162 sequence-related RNAs after
RT-gPCR using SYBR-green. (B) Non-denaturing agarose (2.0%) gel
electrophoresis showing amplification of single products with the
expected size for each of the GhDCL gene transcripts and Gh-miR162. M
represents O'GeneRuler 100 bp DNA Ladder (Fermentas).
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