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Abstract

Background: YBX3/ZONAB/CSDA is an epithelial-specific transcription factor acting in the density-based switch
between proliferation and differentiation. Our laboratory reported overexpression of YBX3 in clear cell renal cell
arcinoma (ccRCC), as part of a wide study of YBX3 regulation in vitro and in vivo. The preliminary data was limited
to 5 cases, of which only 3 could be compared to paired normal tissue, and beta-Actin was used as sole reference
to normalize gene expression. We thus decided to re-evaluate YBX3 expression by real-time-PCR in a larger panel of
ccRCC samples, and their paired healthy tissue, with special attention on experimental biases such as inter-individual
variations, primer specificity, and reference gene for normalization.

Results: Gene expression was measured by RT-qPCR in 16 ccRCC samples, each compared to corresponding healthy
tissue to minimize inter-individual variations. Eight potential housekeeping genes were evaluated for expression level
and stability among the 16-paired samples. Among tested housekeeping genes, PPIA and RPS13, especially in
combination, proved best suitable to normalize gene expression in ccRCC tissues as compared to classical reference
genes such as beta-Actin, GAPDH, 18S or B2M. Using this pair as reference, YBX3 expression level among a
collection of 16 ccRCC tumors was not significantly increased as compared to normal adjacent tissues. However,
stratification according to Fuhrman grade disclosed higher YBX3 expression levels in low-grade tumors and lower
in high-grade tumors. Immunoperoxidase confirmed homogeneous nuclear staining for YBX3 in low-grade but
revealed nuclear heterogeneity in high-grade tumors.

Conclusions: This paper underlines that special attention to reference gene products in the design of real-time
PCR analysis of tumoral tissue is crucial to avoid misleading conclusions.
Furthermore, we found that global YBX3/ZONAB/CSDA mRNA expression level may be considered within a
“signature” of RCC grading.
Background
Comparison of gene expression levels between individ-
uals and/or biological or pathological conditions requires
internal reference such as so-called housekeeping genes
(HKGs), so that normalized expression can correct for
variations in amounts of starting RNA and/or minimize
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biases due to reverse transcription efficiency. The ideal
HKG(s) selected for normalization should not be influ-
enced by experimental or biological conditions to be
compared; in particular, its own expression level should
be identical in tumors and adjacent healthy sites. Fre-
quently, reports focus on a gene of interest (GOI) and
the reference gene is assumed to remain stable without
validation. However, a growing number of studies
showed that the expression levels of many commonly
used HKGs are affected by experimental conditions or
vary in pathological states, particularly in cancer, and
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thus stressed the risk of blind use of classical HKGs
[1-4]. For instance, despite wide use, GAPDH and beta-
Actin should no longer be considered suitable as internal
references in so diverse conditions such as cell prolife-
ration, differentiation, metabolic changes, hypoxia and
cancer [5-11]. Since no universal reference has yet been
discovered, the choice of HKG(s) should be validated in
each condition studied. To this aim, bioinformatics tools
such as NormFinder, BestKeeper and GeNorm have been
recently developed [12-14].
Y-box protein 3 or YBX3 (approved HGNC name

symbol), also known as CSDA (Cold Shock Domain pro-
tein A), ZONAB (zonula occludens 1 (ZO-1)-associated
nucleic acid binding protein) or dbpA (DNA binding
protein A), is a multifaceted epithelial-specific protein
able to (i) act as a transcription factor, (ii) regulate
mRNA stability and (iii) interact with and regulate func-
tion of other proteins. YBX3 is thus implicated in the
regulation of epithelial morphogenesis and homeostasis
by modulating multiple cellular processes such as the
control of cell density, proliferation, differentiation, or
survival. For instance, YBX3 interacts with the cell cycle
regulating kinase CDK4, and upregulates PCNA (Prolif-
erative Cell Nuclear Antigen) and Cyclin-D1 gene tran-
scription [15,16]. In kidney proximal tubular epithelial
cells, YBX3/ZONAB/CSDA not only stimulates prolifera-
tion, but also represses genes involved in apical differen-
tiation such as cubilin and megalin/LRP-2 (low density
lipoprotein receptor-related protein 2) [17]. More recently,
YBX3 binding to the p21 mRNA was shown to stabilize
and enhance p21 mRNA translation, thereby promoting
cell survival in response to cellular stress [18]. Other
studies have implicated YBX3 in tumor development.
Although YBX3 alone is not sufficient to induce liver
tumor development [19], its overexpression and nuclear
localization in hepatocarcinomas have been correlated
to poorer prognosis [20-22]. YBX3 up-regulation has
also been reported to play a role in the pathogenesis of
gastric cancer, increasing cell invasion and tumor che-
moresistance [23]. In opposition, YBX3 would display
anti-oncogenic effects in squamous cell carcinomas,
inhibiting tumor growth and metastasis [24].
Clear cell renal cell carcinomas (ccRCC) rank among ten

most frequent cases of cancer death in developed countries
because of its bad prognosis, linked to a high propensity to
metastasize. Our laboratory recently explored the expres-
sion level of YBX3 in a limited number of non-graded
ccRCC as part of a wide study of YBX3/ZONAB regulation
in vitro and in vivo [17]. Using beta-actin as reference,
YBX3 was found to be overexpressed, although the group
of Jung demonstrated that beta-actin was not appropriate
for ccRCC studies [25]. Moreover, the only other study of
YBX3 expression in ccRCC reported only modest overex-
pression in only one out of ten tumor cases studied [26].
We thus here re-evaluated the expression level of YBX3
as well as other genes implicated in ccRCC in a larger
panel of ccRCC samples (16 instead of 5 previously used),
each compared to adjacent non tumoral tissue, and eva-
luated 8 different HKGs to select for best reference. We
confirmed by multiple analysis that beta-Actin is not
appropriate as internal reference for studies of gene
expression in ccRCC but found that combination of two
HKGs, PPIA (coding for peptidylprolyl isomerase A)
and RPS13 (coding for the ribosomal protein S13), min-
imizes fluctuations when comparing ccRCC samples to
their adjacent healthy tissues. Based on this combined
reference, we found no global difference in YBX3
expression in ccRCC when analyzed all together, as
compared to normal tissue. However, stratification of
ccRCC samples according to tumor grade revealed that
global YBX3/ZONAB/CSDA expression level is higher in
the low-grade tumors and lower in the high-grade tumors.

Methods
Samples
The 16 ccRCC tumor samples and their matched healthy
tissues used in this publication were provided by the
UCL Biolibrary at the Cancer Centre of the Cliniques
Universitaires Saint-Luc (http://www.centreducancer.
be/en/show/index/section/8/page/34), Brussels, Belgium,
project #CDCUCLR, approved by the BioMedical Ethics
Committee of the Université catholique de Louvain. All
tissue samples are provided by the Biolibrary according to
the Belgian law, with the informed consent of the patients
and full agreement from the BioMedical Ethics Committee
of the Université catholique de Louvain. Samples and data
are coded anonymously. Patients’ tumor clinical features
are compiled in Table 1.
Two experimented senior pathologists (EM and JPC)

independently checked all tissues for diagnosis confirm-
ation, percentage of tumor cells and tumor grading. All
tumor samples sections were found to be mainly com-
posed of tumor cells (see Table 1); all “normal” paired
samples were tumor-free, with variable fibrosis.

Total RNA isolation and reverse transcription
Several cryostat slices (cumulative thickness ≈ 100 μm)
of OCT-embedded frozen tissue were pooled and
homogenized in 500 μl of TriZol (Invitrogen), followed
by addition of 30 μg glycogen. Lysates were transferred
on phase-Lock gel (5Prime) to improve phase separ-
ation and to avoid DNA contamination. 100 μl chloro-
form was added, samples were vigorously shaken then
centrifuged at 4°C (12000 g for 15 min). The upper phase
was transferred into a fresh tube and RNA was precipi-
tated with isopropanol (2:1) at −20°C overnight, followed
by 15 min centrifugation as above. RNA pellets were
washed in 75% ethanol and finally resuspended in 30 μl
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Table 1 Patient tumors casuistics

Tumor
number

Gender Age TNM classification Grade Relevant
anteriorities

% Tumoral % Non tumoral

pT pN cM/pM

1 M 66 pT3b pNx cM0 1 No 90 10 - fibrosis

2 M 77 pT3a pN0 pM1 2 No 100

3 M 50 pT3a pNx cM1 3 No 100

4 M 53 pT1b pNx cM0 2 No 90 10 - fibrosis

5 M 43 pT1b pNx cM0 3 No 50 50 - hemorraghes, fibrosis, macrophages

6 M 64 pT3a pNx cM0 2 No 75 25 - fibrosis

7 M 58 pT3a pNx cM0 1 No 60 40 - fibro-vascular

8 M 60 pT1b pNx cM0 1 No 100

9 F 59 pT2b pN0 cM0 2 No 70 30 - fibrosis

10 M 45 pT1b pNx cM0 2 No 95 5 - fibrosis

11 M 74 pT3a pNx cM0 2 No 100

12 M 61 pT3a pNx cM0 3 No 100

13 M 57 pT2a (m) pN0 pM1 3 No 60 40 - normal parenchyma

14 F 71 pT1a pNx cM0 2 Yes* 100

15 F 62 pT1a pNx cM0 1 No 100

16 M 66 pT3a pN0 cM0 3 No 60 40 - fibrosis

*, Primary ccRCC of the left kidney 19 years ago, treated by surgery. Other ccRCC of the right kidney and metastasis in the thyroid 7 years ago, treated by surgery.
Metastasis in the pancreas 3 years ago, treated by surgery. Lobular carcinoma of the right breast treated by mastectomy, axillary dissection, radiotherapy and
tamoxifen 3 years ago.
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RNAse/DNAse-free water. Concentration was determined
in a Nanodrop spectrophotometer and the quality of RNA
was controlled by 260/280 and 260/230 absorbance ratios
(ratios were comprised between 1.84 and 1.95, and be-
tween 1.65 and 2.14, respectively). For reverse transcrip-
tion, 1 μg of total RNAs in 10 μl RNAse/DNAse-free
water was first denaturated by heating at 85°C for 5 min,
followed by rapid cooling on ice. 10 μl containing 200
units MMLV reverse transcriptase with buffer, 200 ng of
primer random p(dN)6 oligonucleotides, 500 μM dNTP,
10 mM DTT, and 40 units of RNAse OUT (final concen-
trations; all from Invitrogen, except random oligonucleo-
tides from Roche) were then added to denatured RNA.
The mixture was incubated successively at 25°C for
15 min, 37°C for 1 h, and 75°C for 10 min. Finally, cDNA
was diluted to a final concentration of 10 ng of starting
RNA per μl and stored at −20°C.

Real-time qPCR
RTqPCR experiments were performed in 10 μl contain-
ing 1 μl of cDNA, 200nM of gene specific primers and
5 μl of 2x Kapa SYBR fast qPCR master mix (KapaBio-
systems). White 96 wells plates (BioRad) were used on a
BioRad CFX96 thermocycler.
Cycling conditions were as follows: an initial step at

95°C 5 min for enzyme activation, followed by 45 cycles
alternation of 3 sec at 95°C; 30 sec at 60°C and a final
dissociation step.
Primers used are listed in Table 2. Primers for YBX3/
CSDA (that we here call YBX3 +Ψ), CycD1, 18S riboso-
mal RNA and beta-Actin have been published [17,27].
Primers for PCNA were from RTPrimerDB database
(http://medgen.ugent.be/rtprimerdb/). For megalin/LRP-
2 and Cubilin we resorted to TaqMan probes (Cat. #
4331182 and # 4331182 Life technologies). The other
targets were designed using NCBI primerblast (http://
www.ncbi.nlm.nih.gov/tools/primer-blast). Only primer
pairs located in different exons separated by an intronic
sequence of at least 1000 bp were considered. Specificity
was verified (i) in silico, by Blast analysis on homo sapiens
Refseq RNA (taking into account not only validated
mRNAs but all including hypothetical RNAs); and (ii)
experimentally, based on a single dissociation peak in
melting curve analysis of cDNA samples and absence of
amplification in negative controls (10 ng of non retro-
transcribed RNA; H2O). Amplicon sizes were checked
on agarose gel and PCR efficiency was assayed for all
primer sets by serial dilutions of cDNA and reported in
Table 1 according to Rasmussen formula: E = 10-1/slope

[28]. As all primer sets exhibited a comparable efficiency
around 2 (100%), the 2-ΔΔCt formula, where ΔCt = CtGOI –
CtHKG, and ΔΔCt =ΔCtTumor – ΔCtNormal, was used to
calculate the fold-expression in tumours compared to
matched normal tissue [29,30]. When the pair of HKGs
(i.e. PPIA + RPS13) was used to normalize gene expres-
sion, CtHKG in the above formula was the geometric mean
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Table 2 List and characteristics of primers used in real-time PCR experiments

Target Full name [mRNA NCBI accession ID] Primer sequence (5′ to 3′) Amplicon size (bp) Slope r2 Eff

β-Act Actin beta [NM_001101.3] F: AGGCCAACCGCGAGAAGATGACC 332 −3.486 0.998 1.94

R: GAAGTCCAGGGCGACGTAGCAC

GAPDH glyceraldehyde-3-phosphate dehydrogenase
[NM_002046.4]

F: TTCTTTTGCGTCGCCAGCCGA 96 −3.402 0.998 1.97

R: GTGACCAGGCGCCCAATACGA

18S 18S ribosomal RNA [NR_003286.2] F: GGCGCCCCCTCGATGCTCTTAG 89 −3.488 1 1.94

R: GCTCGGGCCTGCTTTGAACACTCT

B2M beta-2-microglobulin [NM_004048.2] F: TGCCTGCCGTGTGAACCATGT 97 −3.319 0.997 2.00

R: TGCGGCATCTTCAAACCTCCATGA

RP2 polymerase (RNA) II (DNA directed)
polypeptide A [NM_000937.4]

F: TCCCATGGGTGGAATCTCTCCTGC 162 −3.767 0.995 1.84

R: GAGTAACCTGGGCTGAAGCCGC

PPIA peptidylprolyl isomerase A (cyclophilin A)
[NM_021130.3]

F: ACCGCCGAGGAAAACCGTGTA 129 −3.217 0.999 2.05

R: TGCTGTCTTTGGGACCTTGTCTGC

RPL27 ribosomal protein L27 [NM_000988.3] F: TGGTAGGGCCGGGTGGTTGC 185 −3.203 0.997 2.05

R: ACTTTGCGGGGGTAGCGGTC

RPS13 ribosomal protein S13 [NM_001017.2] F: TCGGCTTTACCCTATCGACGCAG 153 −3.429 0.999 1.96

R: ACGTACTTGTGCAACACCATGTGA

YBX3 +Ψ Y box binding protein 3
[NM_003651.4/NM_001145426.1]

F: CGGTTCATCGAAATCCAACT 166 −3.519 0.999 1.92

R: TAATTGTAGGGACGCCGGTA

YBX3-Ψ Y box binding protein 3
[NM_003651.4/NM_001145426.1]

F: CCACCAAAGTCCTTGGCACTGTC 240 −3.452 0.998 1.95

R: TCCCTTCCACAGGAACTCCATCCG

VEGFa vascular endothelial growth factor
A [NM_001025366.2]

F: AGAAACCACGCTGCCGCCAC 118 −3.191 0.993 2.06

R : GTCTCGCCCTCCGGACCCAA

c-Myc v-myc myelocytomatosis viral oncogene
homolog [NM_002467.4]

F: TACAACACCCGAGCAAGGAC 189 −3.2 0.998 2.05

R: AGCTAACGTTGAGGGGCATC

CycD1 cyclin D1 [NM_053056.2] F: CGCCCCACCCCTCCAG 221 −3.136 0.997 2.08

R: CCGCCCAGACCCTCAGACT

PCNA proliferating cell nuclear antigen [NM_002592.2] F: GTAGTAAAGATGCCTTCTGGTG 190 −3.425 0.997 1.96

R: TCTCTATGGTAACAGCTTCCTC

Database source for sequence design is the NCBI gene browser (http://www.ncbi.nlm.nih.gov/gene). PCR efficiency was calculated with standard curves (slope and
r2 included) according to Rasmussen formula [28]. (F: Forward; R: Reverse). Note that bases indicated in bold text in YBX3 primers correspond to mismatches in
the YBX3 pseudogene 1 sequence [NR_027011.1].
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of the two Ct values. To homogenize runs, the PCR
threshold used to determine Ct was systematically set at
1000RFU, i.e. at the middle of the logarithmic phase of
SYBR incorporation. For each primer set, variability was
assessed in 3 to 5 independent PCR runs; mean variations
were inferior to 2% except for 18S, which reached 4.5%.

Primers design for YBX3
For detection of YBX3 mRNA, two primer pairs were
used. Primers used previously [17] are here called “YBX3 +
Ψ” (where Ψ is its known pseudogene), as two inde-
pendent in silico PCR programs (University of California
Santa Cruz (UCSC) Genome Browser [31]. NCBI primer
blast) revealed that these primers co-amplified YBX3
mRNA but also that of a pseudogene (YBX3P1, Gene ID:
440359, updated on 8-Apr-2014) located on human
chromosome 16. Accordingly, a new pair of primers
specific to the authentic gene, named “YBX3-Ψ”, was
designed with Primer-blast, using same criteria as above.
We found that the sense “YBX3-Ψ” primer hybridized per-
fectly to YBX3 and YBX3P1, while the antisense harbored
four bases that differ from YBX3P1, two at the 3′ end and
two at the 5′ end (Table 2). Specificity was confirmed by
in silico analysis; however despite the 4 divergent bases in
the antisense primer, YBX3-Ψ primers could amplify
in vitro the YBX3P1 pseudogene from genomic DNA. We
tested the efficiency of the two YBX3 primer pairs on
serial dilutions of genomic DNA, from 1 ng to 15 pg
(equivalent to 10% to 0.15% contamination of the RNA
preparation). In that range the amplification efficiency
with YBX3-Ψ primers was reduced as compared to the
amplification with YBX3 +Ψ primers: 82% vs 96%.

http://www.ncbi.nlm.nih.gov/gene
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Immunohistochemistry
Cryostat slices (≈10 μm) of OCT-embedded frozen tissue
were stained with the anti-YBX3 antibody (IBL; #18981)
according to the protocol described (22). Images were
acquired using a Zeiss Mirax Midi microscope.

Statistics
Statistical analyses were performed using GraphPad
Prism (version 5.00; GraphPad Software, San Diego CA).
We selected the non-parametric Wilcoxon test for
paired data to compare HKG levels and normalized gene
expression levels between tumor and healthy tissues.
The non-parametric MannWhitney test was used to com-
pare YBX3 expression between graded tumor groups.
Correlation coefficients were calculated using Spearman
rank method. For all analyses, a p < 0.05 was considered
as statistically significant.
To determine HKG stability, we used the RefFinder

free online access (http://www.leonxie.com/reference-
gene.php). RefFinder integrates the currently available
major computational programs (Normfinder [12], Best-
Keeper [13], geNorm [14] and the comparative ΔCt
method [32]) to compare and to rank the candidate ref-
erence genes.

Results and discussion
Expression and stability of HKG in ccRCC
To optimize normalization of target genes expression in
ccRCC, we measured the expression levels of 8 candi-
date HKGs in a panel of 16 ccRCC and paired non-
malignant tissue. We compared levels of the widely used
18S ribosomal RNA, beta-Actin (β-Act), glyceraldehy
de-3-phosphate dehydrogenase (GAPDH) and beta-2-
microglobulin (B2M) mRNAs, as well as mRNAs for the
less classical RNA polymerase type II (RP2) and pepti-
dylprolyl isomerase A (PPIA), and the recently described
potential HKGs ribosomal protein L27 (RPL27) and
ribosomal protein S13 (RPS13) [33].
Results were first analyzed using standard statistical

tools. Figure 1 shows raw Ct values obtained in all
tumors (grey) and normal samples (white), presented
as box and whiskers plots. As expected, values for 18S
ribosomal RNA (mean Ct 12.6) were lower than mean
Ct values of the seven other HKGs tested (between
24.7 and 31.4). Since Ct values for GAPDH, 18S, B2M,
and RPL27 RNAs were significantly different between
tumor and normal samples (p < 0.05, Wilcoxon test),
these should be a priori disqualified to normalize gene
expression in ccRCC samples (* in Figure 1 and Table 3).
In contrast, the mean expression levels of the four other
mRNAs tested, RP2, β-Act, PPIA and RPS13 did not vary
significantly between the two groups (p > 0.05, Wilcoxon
test). Among these, PPIA and RPS13 exhibited the most
comparable Ct values between tumor and healthy tissues
(p = 0.626 and p = 0.715 respectively, Figure 1 and Table 3).
The stability of the potential HKG was also studied by
calculating the coefficient of variation of raw Ct (CtCV)
obtained in each group (normal: intraN; and tumor:
intraT), and in all the biological samples whatever their
diseased state (Tot) (Table 3). Globally, the expression
levels of all the HKGs tested were less stable in tumor
samples (CtCV > 5% in intraT) than in normal samples
(CtCV < 5% in intraN, except for 18S, GAPDH and B2M).
The larger variability of HKG among tumor samples as
compared to normal tissues from which they arise under-
line the fact that each tumor is unique and may exhibit
genomic instability. The coefficient of variation of each
HKG in all biological samples taken as a whole (CtCV
Tot) was not dependent on the level of expression or Ct
values (see Figure 1) but correlated to their Wilcoxon p
value testing statistical difference between normal and
tumoral groups. These variations illustrate the differences
that do exist among individuals. These observations
underscore the need to work with matched tissues and to
critically select the best HKG in order to minimize biases
when assaying gene expression.
Altogether, this standard statistical analysis disclosed

that PPIA and RPS13 displayed the most comparable
and stable expression levels between normal and tumor
samples, thereby best qualified as internal reference in
ccRCC samples.
This conclusion, and the respective values of the other

RNAs used for normalization, were further tested using
dedicated algorithms available online. RefFinder (http://
www.leonxie.com/referencegene.php?type=reference; see
Methods section) is a user-friendly web-based compre-
hensive tool developed to evaluate and screen reference
genes from large experimental datasets. It integrates the
currently available major computational programs, geN-
orm, Normfinder, BestKeeper, and the comparative ΔCt
method, to compare and rank the candidate reference
genes according to their dispersion as a stability score
[12-14,32]. A gene with a low score has a stable expres-
sion and will thus be better ranked. Based on ranking in
each of these programs, RefFinder assigns an appropriate
score to each individual HKG and calculates the geo-
metric mean of their scores in a final ranking. As this
in silico tool only considers stability of gene levels, but
not different biological populations, it is comparable to
the CtCV analysis (Table 3). Thus, when comparing
several experimental conditions (e.g. tumor vs normal) it
should be used in combination with inter-group statis-
tical analysis as above.
Table 4 summarizes rankings obtained with the different

algorithms for the eight HKGs. This in silico analysis on
the entire (normal and tumoral) cohort of samples con-
firmed that PPIA and RPS13 mRNAs belong to the most
stable housekeeping gene product tested. Interestingly,

http://www.leonxie.com/referencegene.php
http://www.leonxie.com/referencegene.php
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Figure 1 Comparison of expression level for the 8 indicated housekeeping genes (HKG) in the 16 ccRCC samples (grey boxes) and
their paired normal tissue (open boxes). Values are cycle threshold (Ct) cross-points as defined in Material and Methods. Boxes are from lower
to upper quartiles intersected by medians; whiskers are Min/Max values in the cohort of samples. GAPDH, 18S, B2M and RPL27 significantly dif-
fered between paired control versus tumoral groups (*p < 0.05 by Wilcoxon Test, see Table 3).
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beta-Actin mRNA was less stable: except with BestKeeper,
it was scored in the second half of the four other rankings.
The GeNorm algorithm not only supported best rankings
of PPIA and RPS13 evidenced with the other algorithms,
but also provides search for best combinations of HKGs,
which, not surprisingly, was PPIA with RPS13 (Table 4).
Although RPL27 could also be considered as a good HKG
in terms of stability based on this program, with an iden-
tical stability score as PPIA (Table 4), paired analysis
revealed that its level varied statistically between tumors
and healthy tissues (Figure 1 and Table 3).
These results and analysis of candidate HKGs in ccRCC

thus supported and extended the study of Jung [25], which
Table 3 Evaluation by conventional statistical analysis of
HKG levels and stability

Wilcoxon
p value

CtCV intraN (%) CtCV intraT (%) CtCV Tot (%)

18S 0.042* 15.94 29.15 24.52

β-Act 0.391 3.34 9.11 6.85

GAPDH 0.017* 7.71 13.13 12.72

B2M 0.042* 6.82 12.54 10.96

RP2 0.194 3.59 6.59 5.45

PPIA 0.626 3.58 6.66 5.36

RPL27 0.035* 3.97 7.06 6.26

RPS13 0.715 3.55 7.56 5.90

Statistical differences between Ct for tumoral versus normal tissue were
assessed by non-parametric paired Wilcoxon test. Highest p values indicate
best candidates; *(p < 0.05) indicates unsuitable HKG. Coefficients of variation
(CtCV) are given for normal (intraN), tumoral (intraT) and all confounded (Tot)
samples. Lower values reflect lesser dispersion and better stability.
already warned against using beta-Actin mRNA as only
internal reference to normalize RT-qPCR results in
ccRCC, and proposed PPIA as alternative. Our analysis
identified RPS13 as an alternative good HKG for ccRCC.
Interestingly, the GeNorm algorithm indicated that RPS13
and PPIA together provide the best combination of tested
HKGs for gene expression studies in ccRCC. We propose
that both approaches (inter-group statistical analysis and
in silico global stability determination) could be advanta-
geously used to identify the most reliable HKG or combin-
ation thereof.
In the second part of this study, we thus used the

objectively selected combination of PPIA and RPS13 as
reference genes to normalize that of other genes in
ccRCC samples.

Critical evaluation of YBX3/ZONAB/CSDA expression in
ccRCC
Using this selected combination of HKG mRNAs, we
thus re-evaluated the expression of YBX3 in 16 ccRCC
tumor samples and paired normal tissue, including the 3
samples of our previous study for which normal tissue
was available [17].
YBX3 gene (NCBI Gene ID: 8531) is located on chromo-

some 12 at locus p13.1 and encodes two spliced mRNA iso-
forms (NCBI mRNA accession IDs: NM_003651.4 and
NM_001145426.1). However, human genome also contains
a pseudogene for YBX3, YBX3P1, on chromosome 16 [34]
(NCBI Gene ID: 440359, updated on 8-Apr-2014). This
intron-less sequence is almost identical to YBX3 transcript
(95% identity in coding region) and could introduce a bias



Table 4 Ranking of HKG stability by public algorithms

Ranking Ref finder Ge norm Norm finder Best keeper delta Ct

1 RPS13 (1.68) PPIA/RPS13 (0.600) RPL27 (0.244) PPIA (1.074) RPL27 (1.82)

2 PPIA (1.86) RPL27 (0.883) RPS13 (1.252) RPS13 (1.202) RPS13 (1.97)

3 RPL27 (1.86) RP2 (1.038) RP2 (1.276) b-Act (1.250) PPIA (2.01)

4 RP2 (3.94) b-Act (1.206) PPIA (1.387) RPL27 (1.286) RP2 (2.07)

5 b-Act (5.01) 18S (1.776) 18S (1.885) RP2 (1.520) 18S (2.51)

6 18S (5.48) B2M (2.084) B2M (2.198) 18S (2.367) b-Act (2.52)

7 B2M (6.74) GAPDH (2.343) b-Act (2.206) B2M (2.472) B2M (2.72)

8 GAPDH (8.00) GAPDH (2.844) GAPDH (3.161) GAPDH (3.12)

Each HKG (or pair of HKG) is ranked according to the indicated algorithms (respective stability scores indicated in brackets) and RefFinder assigned a final rank
(geometric mean of stability scores for each gene). Lower values indicate more stable genes. Note that (i) PPIA and RPS13 rank at the top of 3 out of 5 algorithms;
(ii) GAPDH and B2M are worst candidates; and (iii) beta-Actin ranks intermediate.
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in mRNA quantification through genomic DNA contamin-
ation, but also if this pseudogene is transcriptionally active
[35-37]. To avoid this possibility, we designed a second pair
of primers aimed at distinguishing cDNA derived from
authentic YBX3 mRNA vs its pseudogene. The first pair,
used previously [17], was noted YBX3 +Ψ, because two
independent in silico PCR programs (UCSC Genome
Browser; NCBI primer blast) showed that these co-amplify
YBX3 mRNA and its pseudogene. The second pair of
primers, named YBX3-Ψ, was designed to be specific for
authentic YBX3 transcript only. Although the same in
silico PCR analysis confirmed its specificity, in vitro
experiments on genomic DNA revealed that YBX3-Ψ
pair could amplify the pseudogene from genomic DNA
(see Methods). However, at low - or real - contaminating
genomic DNA concentration, YBX3-Ψ primers amplified
the pseudogene with a reduced efficiency as compared to
YBX3 +Ψ. We thus preferred (and recommend the use
of) the YBX3-Ψ primers pair.
Figure 2 shows YBX3 expression as dot plot. Expres-

sion of YBX3+/− Ψ in all 16 pairs of samples was first
normalized to beta-Actin (Figure 2A) in order to com-
pare with results from our previous study [17], then to
the geometric mean of the optimal combination of
selected HKGs for ccRCC identified above, PPIA and
RPS13 (Figure 2B). The relative YBX3 mRNA expression
in tumors was presented as ratio to the corresponding
value in adjacent non-tumoral tissue, set as the unity. In
most cases, there was little difference in YBX3 quantifi-
cation when comparing the two pairs of primers (com-
pare open and filled circles).
When expression of YBX3 was normalized to that of

β-Act, global analysis of the 16 samples revealed a wider
distribution and a significant 1.67-fold YBX3 overexpres-
sion in tumors, yet limited to about half samples and at
a modest, if not marginal level. Of the three samples
used in the previous study [17], sample #1 (x6.4) and #3
(x11.8) showed the highest apparent overexpression of
YBX3 when normalized to beta-Actin. However, when
normalized to the geometric mean of PPIA and RPS13,
these samples display a 2.8- and 0.5-fold expression. This
illustrates the strong impact of the choice of HKG to
normalize gene expression, and the need to carefully valid-
ate this internal reference a priori. Moreover, it empha-
sizes the need to re-evaluate YBX3 expression in ccRCC.
When the geometric mean of PPIA and RPS13 expres-

sion levels was used to normalize authentic YBX3 ex-
pression in the 16 samples, the distribution was less
dispersed and this cohort no longer showed a significant
difference in YBX3 expression in tumor samples, as
compared to matched controls (p = 0.9780; Wilcoxon
test), in agreement with the report by Kohno and col-
leagues [26].

Expression of other ccRCC-associated genes
To ensure that the combination of HKGs selected for
normalization of gene expression in ccRCC did not intro-
duce an opposite bias (i.e. by damping individual differ-
ences), we further analyzed the expression of key genes
known to be implicated in the pathogenesis of, and over-
expressed in, ccRCC: VEGFa, cMyc and Cyclin-D1.
The most prevalent cause of ccRCC (80% of patients)

is inactivation of von Hippel-Lindau (VHL) gene, by
allelic deletions, mutations, or epigenetic silencing [38-40].
Inactivation of VHL results into stabilization of Hypoxia
Inducible Factors (HIF) and their accumulation in the
nucleus, thereby inducing a panel of genes including
VEGFa (Vascular Endothelial Growth Factor), PDGF
(Platelet-Derived Growth Factor), EGF (Epidermal Growth
Factor), and TGF (Transforming Growth Factor) that
ultimately lead to neo-angiogenesis and tumor progression
[41,42]. Blocking the VEGF pathway indeed emerged as a
promising therapeutic strategy in ccRCC [43,44]. Even
if less studied than the VHL/HIF/VEGFa pathway, the
c-Myc proto-oncogene and CyclinD1 have also been
clearly implicated in kidney tumorigenesis. As is the case
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in many other cancers, c-Myc is overexpressed in a major-
ity of clear cell renal tumors [45,46], sometimes associated
with c-Myc gene locus amplification [47-49], and is essen-
tial for enhanced proliferation of ccRCC tumor cells [46].
The pro-proliferative CyclinD1 is a c-Myc target and is
highly expressed in 50-75% ccRCC cases [50-52]. More-
over, the VHL pathway has been reported to control
c-Myc [53,54] and CyclinD1 [55,56].
We thus measured the expression of VEGFa, c-Myc

and CyclinD1 in the 16 tissue pairs and normalized their
expression to that of the geometric mean of PPIA and
RPS13 (Figure 3). Tumor samples clearly exhibited a
significant overexpression of VEGFa (***p = 0.0009), c-Myc
(**p = 0.0041) and CyclinD1 (*p = 0.0162), as compared to
their matched normal tissues (Figure 3, Wilcoxon test).
Normalization with the combined references genes thus
confirmed published data, indicating they did not introduce
masking bias.
Expression of YBX3 target genes
We then assessed the expression of known targets of
YBX3/CSDA/ZONAB in the ccRCC samples and studied
the correlation of their expression with that of YBX3.
CyclinD1 and proliferative cell nuclear antigen (PCNA)
contain YBX3-responsive elements in their promoters
and are stimulated by YBX3 (16). On the contrary,
megalin and cubilin genes also contain “CCAAT” boxes
in their regulatory regions, but in these cases YBX3
binding represses transcription (17).
In the 16 tumor tissues, CyclinD1 expression was sti-

mulated as compared to their paired samples (Figure 3).
Interestingly, variations of CyclinD1 expression in the
cohort correlated with YBX3 expression (Additional file 1):
low YBX3-expressing tumors had low levels of CyclinD1,
while high YBX3 tumors displayed high CyclinD1 mRNAs.
PCNA expression level in the ccRCC tumors was not
different from normal tissues and accordingly no correlation
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was found with YBX3 (Figure 3 and Additional file 1).
Cubilin, which is repressed by YBX3 in vitro, was dis-
carded from our analysis as we could not reproducibly
amplify cubilin mRNA in all the 16 paired samples.
Megalin/LRP-2 has been shown by microarray and RT-
qPCR to be overexpressed in clear cell as well as in pap-
illary RCC [57]. This observation was confirmed in our
16 tumor samples that exhibited a significant overex-
pression of megalin/LRP-2 as compared to their paired
controls (Figure 3; **p = 0.0041). Correlation of megalin
expression with YBX3 showed a trend to an inverse
relationship but did not reach statistical significance
(Additional file 1). This correlation study suggests that
in ccRCC, YBX3 level of expression may affect CyclinD1
expression and may also participate in megalin/LRP-2
expression.
Finally, we re-analysed beta-Actin, not only as a clas-

sical HKG, but also as a gene per se based on its nor-
malized expression by reference to combined PPIA and
RPS13. As already observed in Figure 1, β-Act expres-
sion in the 16 tumor tissues was variable and exhibited a
trend to be globally down-regulated in ccRCC samples,
even if not reaching statistical significance (Figure 3).
This observation again argues against the use of beta-
Actin as a reference when measuring gene expression in
ccRCC, and requires one to reconsider YBX3 overex-
pression in most cases of our previous study [17].
Intriguingly, some reports suggest a possible role of
actin expression in the tumorigenesis process. Actin is
a major component of cytoskeleton, and altered cell
morphology is a characteristic of tumor cells, notably
to enable invasiveness, migration and metastasis. For ex-
ample, accumulation of beta-actin in tips of pseudopodia
drives invasiveness and metastatic ability of transformed
MDCK cells [58]. Indeed, even though mechanisms are
not yet well understood, changes in expression level of
beta-Actin were associated with higher invasiveness of
hepatoma cells [59], and with metastatic potential of colon
adenocarcinoma cell lines [60]. Besides its direct role in
the control of cell morphology, actin dynamics could
also regulate genetic programs by the so-called mechan-
ogenetic mechanisms [61,62]. Indeed, ablation of beta-
Actin altered the ratio of globular actin to filamentous
actin in mouse embryonic fibroblasts, with correspond-
ing changes in expression of genes regulating cell cycle
and motility [63].
Interestingly, except for one obvious outlier, variations

of beta-Actin expression in the cohort we analyzed
appeared to correlate with YBX3 expression (Additional
file 1). Variations of beta-Actin expression also followed
in parallel YBX3 expression during mouse kidney em-
bryonic development (data not shown). Based on the
well-known roles of YBX3 in the control of epithelium
morphogenesis, one can hypothesize that YBX3 could
regulate beta-Actin expression during kidney ontogen-
esis and oncogenesis.

Expression of YBX3/ZONAB/CSDA as a function of tumor
grade
Although we concluded above that YBX3 did not show
systematic overexpression in the global cohort of ccRCC
samples, a closer look suggested the possibility of three
expression groups: high, intermediate, and low. Indeed,
as compared to matched normal tissues, five tumors
(# 1, 6, 7, 8, 13) exhibited a significant overexpression of
YBX3; five other (# 3, 5, 11, 12, 16) exhibited significant
underexpression; while the six remaining (# 2, 4, 9, 10,
14, 15) did not show significant difference from their
normal counterparts (Figure 2B, filled circles, YBX3-Ψ
values normalized to PPIA and RPS13; and Additional
file 2). We thus wondered if these variations in YBX3
levels could be related to ccRCC pathogenesis and more
specifically to tumor grades and asked two experimented
pathologists to independently grade the 16 tumor sam-
ples according to Fuhrman (nuclear appearance), being
totally unaware of our expression level data. Both
pathologists agreed on the 16 cases; one case was
nevertheless excluded from further analysis as it con-
tained 40% of normal parenchyma (see Table 1). Of the
15 remaining cases 4 tumor samples were graded #1, 7
were graded #2 and 4 were graded #3. Segmentation of
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YBX3 expression levels according to histopathological
grading is shown in Figure 4. This analysis revealed
that YBX3 negatively correlates to tumor grade with
higher expression levels in grade #1, intermediate in
grade #2, and lower in grade #3 (Figure 4 and additional
file 3). This correlation was further analyzed at the pro-
tein level by immunohistology in tumor samples from
grade #1 to #3 (Figure 4B). YBX3 staining was clearly
evident in all nuclei of grade #1 tumors. In grade #2
tumors, YBX3 staining was weaker in the nuclei and
sometimes appeared in the cytoplasm. In grade #3 tu-
mors, we observed strong inter- and intra-tumor het-
erogeneity of YBX3 staining; varying from complete
absence to intense staining in some nuclei. These quali-
tative histopathological observations are in agreement
with our RT-qPCR analyses showing decreased expres-
sion level of YBX3 from grade #1 to grade #2 and 3
(compare panel A and B of Figure 4).
Even if these numbers were small, the negative correl-

ation of YBX3 mRNA expression level with tumor anapla-
sia, hence potential progression, was clearly significant.
Upregulation of YBX3 in grade #1 tumors, followed by
progressive silencing in more anaplastic, hence more
prone to metastasize, could indicate that YBX3 plays a
biological role at a low degree of neoplastic transformation
characterizing tumors with low metastatic potential, and
be dispensable for disease progression. A similar trend
has been recently reported in hepatocellular carcinoma
A B

Figure 4 Distribution of YBX3 expression ratios in tumor samples acc
expression ratios in the 15 Fuhrman-graded tumors compared to paired adjace
Lines are medians for each group and statistical differences between subg
The expression of YBX3 inversely correlates with tumor grade. (B) Represe
absence of nuclear labeling in stromal nuclei; (ii) overall decrease of inten
#2; and (iv) marked heterogeneity of nuclear labeling in some fields of gra
(HCC). Although YBX3 overexpression and nuclear
localization was initially correlated to poor patients out-
come [22], a recent study by the same team revealed
that high YBX3 level in pre-cancerous “hypercarcino-
genic” states, but not in established HCC, was, in fact,
associated to poor prognosis [64]. It is thus conceivable
that high YBX3 expression would promote dedifferen-
tiation and proliferation, thus secondarily favor mutations
of cancer as a multistep process [65,66]. An interesting
alternative hypothesis is based on the ability of YBX3 to
reduce tumor angiogenesis and lymphangiogenesis,
so as to inhibit tumor growth and metastasis in lung
cancer and squamous cell carcinoma models [24,67].
The authors went so far as to propose YBX3 as a poten-
tial “therapeutic” gene, which, if artificially induced in
tumors, could prevent disease progression and dissem-
ination. Of note, YBX3 is also down-regulated in breast
cancer, as compared to healthy tissue [68]. However, the
grade of the breast cancer was not mentioned. If this
interpretation is correct, YBX3 extinction in most anaplas-
tic, hence potentially invasive tumor cells, would promote
angio/lympho-genesis, thus favor metastatic dissemination.

Conclusion
In conclusion, although the pathogenic implications of
YBX3 in (renal) human tumorigenesis clearly need to be
further explored, its global mRNA expression level may
be part of a “signature” of RCC grading.
ording to histological grading. (A) Circles are values for YBX3-Ψ
nt healthy tissue after normalization to geometric mean of PPIA + RPS13.
roups are indicated as well (Mann Whitney test, *p < 0.05, **p < 0.01).
ntative images of YBX3 protein staining in tumor samples. Note (i)
sity from grade #1 to #3; (iii) occasional cytoplasmic labeling in grade
de #3 only. Scale bar; 50 μm.
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Additional files

Additional file 1: YBX3 correlation with known target genes and
beta-Actin. Dot plots with respective mean fold variations of YBX3-Ψ (X
axis) and CyclD1 (A), PCNA (B), megalin/LRP-2 (C) and B-Act (D) (Y axis) in
the 16 tumor samples compared to adjacent healthy tissues. Red dotted
lines indicate values in adjacent healthy tissues. Black lines show linear
regression curves. Please note the logarithmic scale for megalin expression.
Spearman coefficient of correlation and p value are indicated. Note that
value of sample1 (open circle) can be considered as outlier (outside Tukey
confidence interval) and was excluded.

Additional file 2: Effects of primer and choice of reference HKGs on
the estimation of normalized YBX3 expression in ccRCC samples.
Expression of YBX3 mRNA, measured with YBX3 +Ψ (open bars) and
YBX3-Ψ (filled bars) primers, in each of the 16 tumors compared to adjacent
healthy tissue (set at 1, red dotted line) after normalization to either
beta-Actin (A), or PPIA & RPS13 (B). Values are means of 5 independent
assays with standard deviations. Tumor values statistically different from
their normal paired tissues are indicated by asterisks (*). Pairs 1 to 3
were those analyzed in our previous report [17].

Additional file 3: Distribution of YBX3 +Ψ expression ratios in
tumor samples according to histological grading. Circles are values for
YBX3 +Ψ expression ratios in the 15 Fuhrman-graded tumors compared to
paired adjacent healthy tissue after normalization to geometric mean of
PPIA + RPS13. Lines are medians for each group and statistical differences
between subgroups are indicated as well (Mann Whitney test, *p < 0.05,
NS, not significant). The expression of YBX3 inversely correlates with
tumor grade.
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