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Abstract

Background: Mutations in the X-linked MID | gene are responsible for Opitz G/BBB syndrome, a
malformation disorder of developing midline structures. Previous Northern blot analyses revealed
the existence of at least three MID [ transcripts of differing lengths.

Results: Here we show that alternative polyadenylation generates the size differences observed
in the Northern blot analyses. Analysis of EST data together with additional Northern blot analyses
proved tissue-specific usage of the alternative polyadenylation sites. Bioinformatic characterization
of the different 3'UTRs of MID| revealed numerous RNA-protein interaction motifs, several of
which turned out to be conserved between different species. Furthermore, our data suggest that
mRNA termination at different polyadenylation sites is predetermined by the choice of alternative
5'UTRs and promoters of the MID| gene, a mechanism that efficiently allows synergistic function
of 5" and 3'UTRs.

Conclusion: MID| expression is tightly regulated through concerted action of alternative
promoters and alternative polyadenylation signals both during embryonic development and in the
adult.

Background

Mutations in the X-linked MID1 gene cause Opitz G/BBB
syndrome (OS). OS is a congenital malformation syn-
drome characterized by defective ventral midline develop-
ment with the main features being ocular hypertelorism
and hypospadias. Additional abnormalities such as cleft
lip and palate, laryngo-tracheal fistulas, heart defects,
imperforate anus and mental retardation may also be
present.

Recently we found that the MID1 protein associates with
microtubules [1] and triggers ubiquitination and degrada-
tion of the microtubule-associated protein phosphatase
2a (PP2A) upon interaction with the a4 protein [2]. MID1
loss-of-function mutations, as seen in OS patients, thus
cause accumulation of microtubule-associated PP2A and
hypophosphorylation of its target proteins.
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The MID1 mRNA is subject to extensive alternative splic-
ing [3]. Also, several 5'-untranslated regions have been
identified and the use of five alternative promoters results
in the production of additional MID1 transcript isoforms

[4].

The expression pattern of MID1 has been investigated by
Northern blot analyses and in situ hybridization [5-8]. In
humans, three transcripts of ~7 kb, ~4.5 kb and ~3.5 kb
were observed in all fetal and adult tissues analyzed [6,9].
Remarkably, the coding sequence of MID1 accounts for
only ~2 kb, and the size differences between the known
MID1 sequence and the transcripts cannot be explained
by alternative splicing of either the coding region or
5'UTR. However, splicing and/or alternative polyadenyla-
tion of the 3'UTR have not been investigated so far.

The 3'UTRs of many genes have been shown to be
involved in pleiotropic regulatory functions, such as RNA
localization, mRNA degradation and stabilization, and
translational control. In the present work we describe the
identification of several alternative polyadenylation sites
in the human MID1 3'UTRs which give rise to transcripts
with four different 3'UTRs and tissue-specific expression
patterns.

To identify putative regulatory structures we have charac-
terized the MIDI1 3'UTR with bioinformatic tools and
report the presence of putative target sites for RNA bind-
ing proteins. Notably, we identified several AU-rich ele-
ments (AREs) and cytoplasmic polyadenylation elements
(CPEs). As proteins binding to both AREs and CPEs are
known to be key regulators of mRNA stability and/or
translation, our results suggest a tight control of MID1
expression through the different 3'UTRs. Intriguingly, we
also found that specific polyadenylation signals are
arrayed with distinct 5'UTRs and promoters of the MID1
gene, indicating that polyadenylation is a promoter-
driven process.

Results

EST data indicate alternative polyadenylation of the
MIDI gene

Previous Northern blot analyses of human PolyA* RNA
showed MID1 transcripts of ~7 kb, ~4.5 kb and ~3.5 kb
[6,9]. As these size differences cannot be explained by
alternative splicing of the coding sequence or the 5'UTR,
we hypothesized the existence of alternative polyadenyla-
tion sites (poly(A) sites) in the 3'UTR. To test this hypoth-
esis we analyzed human EST data overlapping the MID1
3'UTR. A review of the human EST database indicated at
least three alternative poly(A) sites (Fig. 1a), which we
named ESTa, b and c¢. Whereas ESTa and ¢ contain consen-
sus polyadenylation signals at their 3'ends and therefore
seem to terminate at real polyadenylation sites, ESTb does
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not contain such a signal. A stretch of oligo-A present at
the 3'end of ESTb pointed to putative mis-priming of
polyT-primers as a likely cause of this artifactual polyade-
nylation site (Fig. 1a). While 53 ESTs overlap ESTc, only
23 ESTs correspond to ESTa (see additional file 1); this
likely reflects preferential use of the polyadenylation site
corresponding to ESTc.

Alternative polyadenylation of the MID | gene in different
species

To confirm alternative polyadenylation experimentally
we performed 3'RACE with ¢cDNA derived from human
fibroblasts (Fig 1b). Fibroblasts were chosen for this anal-
ysis because they express MID1 at a moderate level. Inter-
estingly, sequencing of the PCR products revealed four
different polyadenylation sites which we named PAS1-4
(Fig. 1a and 1b). Two of them match the EST data: PAS1
corresponded to ESTa and PAS3 to ESTc; however, no EST
data were available for PAS2 and PAS4 (Fig. 1a).

Polyadenylation signals consisting of an upstream ele-
ment (AAUAAA) and a downstream U-rich or GU-rich ele-
ment are in close proximity to all four poly(A) sites
(PAS1-PAS4, see additional file 2), and sequence compar-
ison showed that all four upstream elements are con-
served between human and dog. In contrast only some of
the human upstream elements are conserved in other spe-
cies. Whereas the element upstream of PAS2 is conserved
between human, opossum and chicken, the element
upstream of PAS3 is conserved between human and rat
(see additional file 3). To test experimentally whether the
MID1 mRNA is alternatively polyadenylated in other spe-
cies we performed 3'RACE on ¢cDNA from rat brain, a tis-
sue known to express high levels of MID1 (Fig. 1b).
Sequencing of the PCR products revealed three alternative
polyadenylation sites, rPAS1-3 (Fig. 1b) with rPAS3 cor-
responding to PAS3 of the human MID1 gene, and rPAS1
and rPAS2 probably representing species-specific sites.

3'UTR 4 directs expression of tissue specific transcripts

To test for expression of the human transcript terminated
by PAS4, we hybridized a specific riboprobe (nbPAS4; Fig.
1b) against commercially available Northern blots con-
taining human polyA+ RNA extracted from a variety of
fetal and adult tissues. In contrast to the picture obtained
with a probe detecting the MID1 open reading frame,
which showed ubiquitous expression of a ~7 kb transcript
(Quaderi et al. 1997), a transcript of similar size could
only be observed in fetal liver and skeletal muscle with
nbPAS4 (Fig. 2a, arrows). Additionally, a variety of shorter
and longer transcripts were detected in heart, skeletal
muscle, liver and fetal liver. Among them a ~2 kb tran-
script was identified in both adult and fetal liver, making
it solely a liver-specific transcript (Fig. 2a, arrow). To fur-
ther characterize these transcripts we performed 5'RACE
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Alternative polyadenylation sites in the MIDI mRNAs of human (PASI-PAS4) and rat (rPAS1-rPAS3). (A) The 3'UTR of
human MID| containing alternative polyadenylation sites identified in this study together with data on mRNAs, ESTs and con-
servation obtained from the UCSC genome browser March 2006 assembly. Regulatory motifs are highlighted in different
colors. (B) Ethidium bromide gels of 3'RACE experiments. Locations of primers are indicated in the cartoons (arrows). Aster-
isks indicate unspecific products. PAS3 and rPAS3 are homologues. The nucleotide sequences of novel 3'ends have been sub-
mitted to Genbank with accession numbers EF217423, EF2 17424, EF217425, EF217426, EF217427, EF217428, and EF217429.

The position of the northern probe nbPAS4 is indicated.
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Figure 2

Northern blot and 5'RACE analysis of human 3'UTR4. (A) Fetal and adult multiple-tissue Northern blots hybridized
with a riboprobe detecting a region between PAS3 and PAS4 of the human 3'UTR. Arrows indicate MID| transcripts. (B)
5'RACE products obtained with primers located downstream of PAS3. The nucleotide sequences of 5'RACE products have
been submitted to Genbank with accession numbers EF532594, EF532595, EF532596.

experiments on cDNA derived from human fetal liver
with a gene-specific primer located downstream of PAS3
(Fig. 2b). Interestingly, sequencing of the PCR products
revealed three unspliced transcripts of different lengths
with transcription start sites located in the 3'UTR region
upstream of PAS3 (Fig. 2b).

MIDI transcripts starting from alternative 5'UTRs end at
specific polyadenylation sites

Previous Northern blot analyses showed MID1 transcripts
of ~7 kb, ~4.5 b and ~3.5 kb [6,9], thus indicating that all
alternative polyadenylation signals are connected to the
full-length coding sequence. However, as human MID1
has five alternative promoters and 5'UTRs [4], we tested

for preferential and regulated choice of polyadenylation
signals in transcripts starting from alternative promoters.
RT-PCR experiments were performed using RNA derived
from human fibroblasts with primers connecting alterna-
tive 5'UTR exons 1a, 1c and le to regions upstream of
PAS1 (primer set 1), PAS2 (primer set 2) and PAS3
(primer set 3) (Fig. 3a and 3b). Of note, primer set 1
amplified transcripts with poly(A) tails at PAS1-4
whereas primer set 2 amplified transcripts with poly(A)
tails at PAS2-4 and primer set 3 exclusively amplified
transcripts with poly(A) tails at PAS3-4. For sequencing,
PCR products were excised from the gel and cloned into
the pGEM-T Easy vector.

Concerning exon 1¢, products were amplified with each of

the different 3'UTR primer sets (Fig. 3b). In view of the tis-
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Identification of full-length MIDI transcripts. (A) 5'UTR exons, coding region and 3'UTR of MID[. Arrows indicate loca-
tion of primers. (B-D) Ethidium bromide stained gels of RT-PCR products obtained using RNA from fibroblasts (B), testis (C)
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blots hybridized with probes corresponding to 5'UTR exons lc (E) or le (F). Arrows indicate MID | transcripts.
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sue-restricted expression of PAS4, this result clearly shows
that transcripts starting in exon 1c are polyadenylated at
PAS3 and thus correspond to the 7 kb transcript seen on
Northern blots. However, it remains unclear whether
there actually are transcripts that start in exon 1c and ter-
minate at PAS1 or PAS2. Sequencing of the cloned PCR
products revealed the constitutive MID1 coding sequence
to be present in five out of six clones (Fig. 3b). One clone
represented an in-frame splice variant containing the
short variant of exon 1, alternatively spliced exon 2d and
constitutive exons 2-9 [3] (Fig. 3b). Because of the com-
parable sizes of the two transcripts, the RT-PCR products
of the alternative splice variant and the constitutive tran-
script could not be separated on the agarose gel.

RT-PCR with primers located in Exvla amplified products
only in combination with reverse primers located
upstream of PAS1, indicating preferential polyadenyla-
tion at PAS1 in transcripts derived from promoter 1a (Fig.
3b). However, as the primers located upstream of PAS2
showed inconsistent results in other experiments (see
below), we cannot exclude the use of PAS2 with Exvla.
Again, sequencing of three clones confirmed the specifi-
city of the RT-PCR reaction and revealed the presence of
the constitutive coding sequence in two of them and the
presence of an alternative splice variant containing the
short variant of exon 1 in the third (Fig. 3b).

The use of forward primers located in exon 1le led to
inconsistent results. In two out of three independent
experiments we obtained products when using reverse
primers located upstream of PAS3. While we were not able
to clone these products, the transcript sizes indicated the
presence of the entire 3'UTR sequence in those transcripts.
However, when we used reverse primers located upstream
of PAS2, no products were obtained in any of the experi-
ments. RT-PCR with reverse primers located upstream of
PAS1 amplified transcripts in every experiment (Fig. 3b).
Characterization of these transcripts revealed the presence
of the constitutive coding sequence in five out of six
sequenced clones and a splice variant containing the short
variant of exon 1 in the sixth (Fig. 3b).

Our RT-PCR experiments indicate preferential and regu-
lated choice of polyadenylation signals for transcripts
starting from each single MID1 promoter. To test whether
this phenomenon is a characteristic of fibroblasts or a gen-
eral regulatory mechanism of MID1 expression we per-
formed RT-PCR experiments using RNA derived from two
additional human tissues, namely testis and fetal brain
(Fig. 3c and 3d). Again, we obtained products with each
of the different 3'UTR primer sets when forward primers
were located in exon 1c (Fig. 3c and 3d) and only
obtained products from fetal brain with primer set 1 when
forward primers were located in Exv1a (Fig. 3d). When we
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used RNA from testis we couldn't obtain any products
with primers located in Exv1a indicating that Exv1la is not
expressed in this tissue. With exon le primers products
were amplified only with primer sets 1 and 2 indicating
termination at PAS2 in these tissues.

Sequencing of the two cloned products revealed the con-
stitutive MID1 coding sequence when primers where
located in Exvla or exon le. Concerning exon 1c we addi-
tionally obtained two alternative splice variants (Fig. 3¢
and 3d). One short variant, which was present in both tis-
sues, testis and fetal brain (Fig. 3c and 3d, arrows), con-
tained constitutive exons 1 and 9. The second splice
variant lacked part of the 3'UTR but contained the whole
constitutive coding region.

In confirmation of the RT-PCR experiments, probes spe-
cifically detecting exon 1c or exon le were hybridized
against commercially available Northern blots containing
polyA+ RNA extracted from a variety of human fetal tissues
(Fig. 3e and 3f). A ~7 kb and a weaker ~3.5 kb transcript
were detected in all fetal tissues analyzed using a probe
hybridizing to exon 1c (Fig. 3e) confirming termination
of exon 1c transcripts at PAS3 (predominantly) and PAS1.
In contrast, a probe hybridizing to exon 1e detected a ~3.5
kb transcript but not a ~7 kb transcript (Fig. 3f). This
hybridization pattern indicated that the 7 kb transcript,
which would use the PAS3 polyadenylation signal, is a
rare mRNA when transcription is initiated by use of pro-
moter e. However, while expression of the ~3.5 kb tran-
script was high in fetal kidney, weak expression of the
same transcript could be detected in the other fetal tissues
by autoradiography prior to the final washing of the
membrane (data not shown). Also we observed expres-
sion of smaller transcripts of ~2.5 kb in fetal lung and ~1.5
kb in fetal liver, suggesting that promoter e drives expres-
sion of smaller splice variants in addition to the expres-
sion of the constitutive MID1 coding sequence (Fig. 3f).
However, because hybridization was carried out with a
double-stranded DNA-probe, these smaller transcripts
might also be overlapping antisense transcripts. Remarka-
bly, in contrast to our RT-PCR experiments we could not
detect any transcripts in fetal brain, which indicates their
low expression. By direct comparison of the two Northern
blots (Fig. 3e and 3f) the two main transcripts of each pro-
moter variant (7 kb when exon 1cis used and 3.5 kb when
exon 1 e is used) both appear to be highly expressed in
fetal kidney while expression levels of these transcripts
and those of smaller sizes appear to vary in all other tis-
sues.

The MIDI 3'UTR contains highly conserved regulatory
motifs, which are bound by interacting proteins

In order to screen for functionally relevant sequences
within the 3'UTR of MIDI1, evolutionary conservation
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between human, rat and dog MID1 3'UTRs was analyzed.
While the overall sequence identity (from the end of the
coding sequence through to PAS3 in the rat and through
to PAS4 in the dog) is 76% between human and rat and
80% between human and dog, some blocks of stronger
sequence similarity are present - the strongest starting
1,852 bp 3' of the translational stop codon, spanning 503
bp, and having a sequence similarity of 88% between
human and rat. Parts of the 3'UTR are conserved even
between human/rat and more distantly related species
like Xenopus tropicalis and Tetraodon (Fig. 1a), indicating
that the MID1 3'UTR is under strong selective pressure.

Conservation of the sequence of the MID1 3'UTR suggests
the presence of regulatory motifs, such as for the binding
of proteins. Bioinformatic analysis indeed identified sev-
eral putative protein-binding motifs. In addition to motifs
like cytoplasmic polyadenylation elements with the con-
sensus sequence TTTTAT [10] and additional polyade-

4A
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nylation signals, we found AU-rich elements (AREs) with
the sequence ATTTA in all parts of the 3'UTR (Fig. 1a, 4a
and additional file 4). Some of these short ARE motifs
were found to be parts of much longer AU-rich sequences
which may indicate their functional relevance [11] (Fig.
4a). AREs have been shown to influence RNA stability
and/or to control translation of a number of genes [11-
13].

Particularly ARE1 seemed to be of potential functional rel-
evance because it comprises a long AU-rich sequence,
which is highly conserved in various species (Fig. 4a). To
test for binding of interacting proteins to this motif a radi-
oactively labelled transcript corresponding to ARE1 was
incubated with HeLa cell lysate and subsequent UV-
crosslinking was performed. Complexes were resolved by
electrophoresis through SDS acrylamide gels and dried
gels were exposed to X-ray film. Interestingly, this method
identified several proteins of ~78 and 30-45 kD that had

ARE1 5‘CTTTAATAATTTCTTTAATTTTTTTGTATTTAGAGGAAAATCTATAGATTATTTATAA 3° human

................. T e i et e e e e e e e e et e et et e e rat
............... C..A.....C.......Cov....G. T .G dog
............... GG.ACA. ... ..CG. .G . Tttt iiiiinnn opossum
.......... AA...AG.AC.C....C.vvurereeenGuuTur e Beeeannnn. chicken
Tevunn. T.C..T..... AA..A—-A..... TC..ACCCG..GG..A...T....A.T tetraodon

ARE 2 5‘ATTCTATATATTTACTATATTATTTATA 3° human
e Teoio Gttt i i rat
B dog
L AG....... opossum B b C °
CC..T.C..A..G...C.G..C..G.T chicken _—0 « 3 @
G.C.G....G G.G.A.......G  X_tropicalis ge EE g oo

<0 <° K 2§ Z§
kD

ARE3 5‘TTTAAAAATATTTATAAAATA 3° human p45:; g
Covnn Tevun.. — e rat p42 3 J AUF1
ALL.T A..C cc dog P374 .

Figure 4

HuR

Regulatory motifs in the 3'UTR of the human MIDI gene. (A) Sequences of ARE motifs 1-3 with surrounding AU-rich
sequences. (B) UV-crosslink with protein lysate from Hela cells and the AREI motif. Arrows indicate proteins that bound the
AREI sense transcript with much higher affinity than the antisense negative control. (C) Western blot analyses of RNA-protein
pulldowns with protein lysate from Hela cells and the AREI motif. HuR and AUFI are detected using specific antibodies.
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bound the sense ARE1 transcript but not the antisense
control (Fig. 4b). In a next step we tried to identify pro-
teins which interact with the ARE1 motif. As candidates
we considered the ARE-binding proteins HuR and AUF1
because they have sizes between 32 and 45 kD which cor-
respond to those of the proteins seen in the UV-assay. To
test for binding of the candidate proteins we performed a
RNA-protein pulldown assay by incubating a biotin
labelled transcript corresponding to ARE1 with Hela cell
lysate. RNA-protein complexes were subsequently pulled
down with streptavidin magnetic beads. Complexes were
resolved by electrophoresis through SDS acrylamide gels.
Western blot analyses with specific antibodies directed
against AUF1 and HuR showed a clear binding of both
proteins to the ARE1 sense RNA, while only little AUF1
protein and almost no HuR had bound to the ARE1 anti-
sense RNA (Fig. 4c).

Discussion

Alternative polyadenylation is a widespread mechanism
of gene regulation in mammals and is often associated
with specific tissue/cell types and/or developmental stages
[14-17]. Previous Northern blot analyses of human fetal
and adult tissues identified MID1 transcripts of ~7 kb,
~4.5 kb and ~3.5 kb [6,9]. Here we show that tissue-spe-
cific alternative polyadenylation in the MID1 gene under-
lies the observed size differences. Interestingly, usage of
the identified polyadenylation sites appears to be deter-
mined by the choice of alternative promoters, which
themselves contribute to differential MID1 expression [4].
In a bioinformatic approach we further found numerous
putative RNA-protein interaction motifs in the MIDI
3'UTRs, several of which turned out to be conserved
between human and other species.

We found that the human MID1 3'UTR contains four
polyadenylation sites, PAS1-PAS4. Polyadenylation at
PAS1 results in a 3.5 kb transcript and usage of PAS2 leads
to a 4.5 kb transcript. Due to a size difference of only 250
bp, mRNAs polyadenylated at PAS3 and PAS4 appear as a
single ~7 kb band on Northern blots.

In order to differentiate between the transcripts using
either PAS3 or PAS4 we hybridized a riboprobe exclu-
sively detecting the fourth part of the 3'UTR against com-
mercially available Northern blots. In contrast to
ubiquitous expression of the 7 kb transcript detected with
a probe corresponding to the MID1 open reading frame
(Quaderi et al. 1997), we saw expression of the PAS4 7 kb
transcript to be restricted to skeletal muscle and fetal liver.
Hence, these experiments prove tissue restriction of the
PAS4 transcripts and ubiquitous expression of the PAS3
transcripts and indicate that PAS3 is the constitutive poly-
adenylation signal. Remarkably, besides the ~7 kb tran-
script, shorter variants of ~2 kb, ~1.35 kb and ~900 bp
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could be observed when using the PAS4 specific ribo-
probe. The use of a single stranded riboprobe for North-
ern blot analyses excluded the possibility that these
transcripts are overlapping antisense transcripts. 5'RACE
showed that these transcripts are unspliced and have tran-
scription starts which are located in the 3'UTR. Several
points indicate that these are full-length transcripts. First,
the overall sizes of transcripts 1 and 2 approximately
match the sizes of the 2 kb and 0.9 kb Northern bands
detected in the lane loaded with RNA from fetal liver (Fig.
2a and 2b). An additional smaller 0.4 kb transcript ampli-
fied by 5'RACE did not show up on the Northern blot
which might be due to its low expression (Fig. 2b). Sec-
ondly, all three transcripts contain a distinct sequence
motif which is found exclusively in transcription start sites
derived from 3'UTRs [15], namely a triple G at the -3 to -
1 position. In addition to the triple G, Carninci et al. [15]
mentioned a highly conserved region located 40 to 90
bases downstream of 3'UTR transcription start sites. Con-
cerning the MID1 transcripts, conservation of the +40 to
+90 region is not higher than that of the remaining 3'UTR.
As PAS4 is poorly conserved in other species this polyade-
nylation site might be human specific and therefore a high
conservation of the +40 to +90 region might not be
expected. Although the functions of transcripts with tran-
scription starts in 3'UTRs are unclear it has been suggested
that they might regulate downstream genes which are
encoded on the opposite strand using a sense-antisense
mechanism [15]. The next neighbouring gene, the CLCN4
gene, is located at a distance of ~350 kb downstream of
MID1. As this gene is encoded on the opposite strand
compared to MID1 such a sense-antisense regulation
seems possible. On the other hand the three identified
transcripts might encode short proteins. However, inspec-
tion of the sequence of transcript 1 which also contains
the sequences of transcripts 2 and 3 revealed the longest
protein sequence to be 83 amino acids with no conserved
domains.

Tian et al. estimated that ~54% of all human genes and
~32% of all mouse genes use alternative polyadenylation
sites [18]. Many human polyadenylation signals used are
conserved in their rodent orthologs. Interestingly, con-
cerning the MID1 polyadenylation signals, only the signal
directing cleavage of PAS3 is conserved in the rat, again
indicating that PAS3 is the constitutive polyadenylation
site whereas PAS1, PAS2 and PAS4 can be used alterna-
tively. This is further supported by the fact that the 7 kb
transcript, which derives from transcripts using PAS3, is
more strongly expressed than the 4.5 kb and 3.5 kb tran-
scripts. Moreover, PAS3 is represented by multiple ESTs in
the database that are derived from a variety of fetal and
adult tissues (see additional file 1, Fig. 1a). No ESTs were
found representing transcripts using PAS2 and PAS4 and
only a few ESTs are present to indicate usage of PAS1.
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ESTs for PAS1 are mainly derived from stomach, suggest-
ing tissue-specific usage of PAS1.

However, a definitive statement about relative expression
levels of the alternatively polyadenylated MID1 tran-
scripts cannot be made at this point which is due to the
following reasons: First comparison of differently sized
transcripts that are detected through northern blot analy-
ses is limited because the signal intensity is influenced by
the sizes of the respective transcripts. Second the
sequences of the alternatively polyadenylated MID1 tran-
scripts are partially overlapping, and thus cannot be
amplified individually by RT-PCR experiments.

Interestingly, we show that promoter usage is linked to
poly(A) site selection in the MID1 gene (Fig. 3a-f). This
phenomenon cannot be explained solely by expression of
tissue-specific polyadenylation factors although the rela-
tive levels of expression of polyadenylation factors and
transcription factors might influence the poly(A) site
selection in a given cell-type [17]. Splicing factors that
have a role in 3'end formation, as suggested recently [19-
23] could contribute here. Also, chromatin-remodelling
enzymes that can have both positive and negative roles in
promoter regulation, elongation and termination could
be involved [24]. In line with that hypothesis it has been
suggested that predefined chromatin transcription units
exist in yeast before transcription commences [24]. Fur-
thermore, specific transcription factors that bind to both
the promoter and poly(A) signal could play a role, which
is supported by the observation that an increasing number
of factors are essential for transcription and transcript ter-
mination [24,25]. It seems possible that all these mecha-
nisms act together and build up a complex regulatory
network that controls poly(A) site selection in order to
ensure a tight control of gene expression. In the future the
well characterized MID1 transcripts will be a suitable
model for further investigation of this plausible hypothe-
sis.

5'UTRs and 3'UTRs are implicated in the regulation of
many aspects of mRNA function. 5'UTRs may contain
upstream open reading frames which inhibit translation
by restricting the access of ribosomes to the correct start
codon [14]. Several upstream AUG codons are present in
the different MID1 5'UTR exons and hence, it was sug-
gested that differentially transcribed MID1 isoforms are
translated at different levels [4]. Moreover, both 5'UTRs
and 3'UTRs can contain specific sites to which regulatory
RNAs or proteins bind. The composition of these sites
ranges from short primary sequence elements to specific
secondary structures [14,26]. Sequence analyses of the
MID1 3'UTR revealed the existence of several cytoplasmic
polyadenylation elements (CPEs). Cytoplasmic polyade-
nylation is a key mechanism affecting genes that are
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involved in synaptic plasticity and controlling mRNA
translation during early development [10]. It is regulated
by two cis-acting sequences, the CPE and the upstream ele-
ment AAUAAA. Although it has been suggested that CPEs
are usually located within 20-30 nucleotides upstream of
the AAUAAA element, examples of mRNAs with much
longer CPE-to-AAUAAA distances have been described,
e.g. the CPE of C11, which resides 286 nucleotides
upstream of the hexamer [27]. Of note, four of the six
CPEs found in the MID1 3'UTR are conserved in other
species (see additional file 4). Besides CPEs, the MID1
3'UTR contains multiple AU-rich elements (AREs) of the
sequence ATTTA, several of which are conserved in other
species (Fig. 4a). Like functionally relevant AREs of other
genes [26], four of the conserved pentamers of the MID1
3'UTR are embedded in much longer AU-rich sequences
(Fig. 4a). AREs are well described sequence elements to
which a range of different proteins can bind, e.g. AUF1,
HuR and KSRP [26,28]. These proteins can influence sta-
bility and/or translation of the respective mRNAs. In a
UV-crosslink assay we could identify several proteins that
bind to the ARE1 motif of the human MID1 3'UTR. As the
sizes of the identified proteins fit quite well with the sizes
of several known ARE-binding proteins, such as HuR and
AUF1, they were good candidates for regulating MID1
expression. In an RNA-protein pulldown assay we could
indeed confirm binding of these proteins to the ARE1
motif of the MID1 3'UTR.

Conclusion

We found that mature mRNAs of the MID1 gene end at
four different polyadenylation sites. The different 3'UTRs
of the MID1 gene contain several evolutionary conserved
sequence motifs, which suggests a contribution of the
3'UTRs to the mRNA stability and translation of the gene.
In addition, we found that expression of the MID1 gene is
differentially regulated by the concerted action of alterna-
tive promoters and alternative polyadenylation signals
both during embryonic development and in the adult.

Methods

RT-PCR, 3' and 5'-RACE, Northern Blot Analysis

Total RNA from human testis was purchased from BioCat
(BioCat GmbH, Heidelberg, Germany). Total RNA from
fetal brain was purchased from Clontech. Total RNA from
rat brain was kindly provided by Dr. Diego Walther.
cDNA synthesis was performed as described previously
[3]. 3 ul from a total of 25 pl cDNA was used for PCR with
primers annealing to different parts of the 3'- and 5'UTRs
of the MID1 gene (for primer sequences see additional file
6). First and nested PCRs were performed following the
instructions of the Expand Long Template PCR System
(Roche, Germany). PCR products were excised from the
gel, purified using a Gel Extraction Kit (Qiagen, Ger-
many), cloned into the pGEM-T Easy vector (Promega)
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and sequenced. 3' and 5'-Race experiments were per-
formed as described previously [3]. Amplification of
cDNA was carried out using primers that annealed to dif-
ferent parts of the human and rat MID1 3'UTRs. Primer
sequences for RT-PCR, 3' and 5'-Race experiments are
given in additional files 5 and 6.

Multiple-tissue Northern blots (Clontech) were hybrid-
ized with 32P-labeled DNA probes or riboprobes. Ribo-
probe nbPAS4 was synthesized by in vitro transcribing a
PCR template corresponding to a sequence 5' of PAS4.
Primer sequences are given in additional file 7. Hybridiza-
tions were carried out as described previously [3].

In vitro transcription

32P-labelled cRNAs or biotin-labelled cRNAs correspond-
ing to the sense and antisense 70-307 3'UTR human
MID1 were produced using purified PCR-amplified cDNA
which included the T7 Polymerase promoter sequence
and T7 polymerase (Promega) according to the manufac-
turer's procedure. Primer sequences are given in addi-
tional file 7. In vitro transcribed probes were DNAse
treated and Ethanol precipitated.

UV crosslinking assay

Hela cells were lysed with ultrasound and centrifuged at
12,000 x g 15 min. 4°C. Reaction mixtures containing 20
pg of protein lysate in reaction buffer (5.2 mM HEPES [pH
7.9], 50 mM KCl, 10 mM DTT, 5 mg/ml heparin, 1% glyc-
erol, 40 pg/ml yeast tRNA) and 250.000 cpm of radiola-
beled probe were incubated for 10 min. at room
temperature, UV crosslinked for 10 min. in a UV Strata-
linker 1800 (Stratagene) and digested with 1 U each of
RNAse A and RNAse T1 for 15 min. at 37°C. Complexes
were resolved by electrophoresis through SDS-10% acry-
lamide gels, after denaturation at 95°C for 5 min. Gels
were dried and exposed to X-ray film.

RNA-protein pulldown

Hela cells were lysed with ultrasound and centrifuged at
12,000 x g 15 min. 4°C. Reaction mixtures containing
200 g of protein lysate in TKM buffer (20 mM Tris [pH
7.5], 150 mM KCl, 5 mM MgCl,) supplemented with 1%
NP40, 1 mM DTT, complete protease inhibitor cocktail
(Roche), 100 U of RNasin (Promega) and 3 pg of biotin-
labelled probe were incubated for 1 hour at 4°C, followed
by the addition of streptavidin magnetic beads and incu-
bation for 2 hours at 4 °C. After washing and denaturation
at 95°C for 5 min. proteins were resolved by electrophore-
sis through SDS-10% acrylamide gels. Gels were blotted
on PVDF membranes and Westernblot analyses per-
formed with antibodies directed against HuR (Santa
Cruz) and AUF1 (Upstate).
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Bioinformatic analyses

We used the UCSC Genome Browser March 2006 assem-
bly to analyse the complex structure of the 3'UTR MID1
including repeat occurrence and evolutionary sequence
conservation [29]. The longest 3'UTR, which spans all the
shorter transcript variants, was scanned for potential poly-
adenylation signals [15] and known binding motifs for
RNA-binding proteins (RBP) using BioPerl [30]. For
detecting polyadenylation signals we used the upstream
core element AATAAA and the downstream GU or U-rich
element. For detecting of CPEs and AREs we used the min-
imal elements TTTTAT and ATITA which have been
shown to suffice for binding of interacting proteins
[26,10].
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Additional material

Additional file 1

Human ESTs indicate usage of PAS1 or PAS3. The table lists all ESTs for
PAS1 and PAS3.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S1.doc]

Additional file 2

Poly(A) signals that are in close proximity to the alternative poly(A) sites
of the human and rat MID1 3'UTRs. This figure shows the composition
of poly(A) signals for human and rat alternative poly(A) sites.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S2.ppt]

Additional file 3

Conservation of the hexamers AAUAAA located upstream of the alterna-
tive MID1 polyadenylation sites in different species. Shown is an align-
ment of the hexamers located upstream of the alternative MID1
polyadenylation sites for different mammalian and other vertebrate spe-
cies.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S3.ppt]

Additional file 4

Conservation of cytoplasmic polyadenylation elements in different species.
Shown is an alignment of the cytoplasmic polyadenylation elements
located in the MID1 3'UTR for different mammalian and other vertebrate
species.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S4.ppt]
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Additional file 5

List of primers used for 3" and 5'RACE. This table provides the sequences
of primers used for 3" and 5'RACE experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-55.doc]

Additional file 6

List of primers used for RT-PCR. This table provides the sequences of prim-
ers used for RT-PCR experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S6.doc]

Additional file 7

List of primers used for generating probes for Northern blot analysis and
the UV-crosslink/RNA-protein pulldown assay. This table provides the
sequences of primers used for generating probes for Northern blot analysis
and UV-crosslink/RNA-protein pulldown assays

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-105-S7.doc]
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