
BioMed CentralBMC Molecular Biology

ss
Open AcceResearch article
Regulation of expression of two LY-6 family genes by intron 
retention and transcription induced chimerism
Vincenzo Calvanese1,5, Meera Mallya2,4, R Duncan Campbell2,3 and 
Begoña Aguado*1,2

Address: 1Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC, Madrid, 28804, Spain, 2MRC Rosalind Franklin Centre for Genomics 
Research, Cambridge, CB10 1SB, UK, 3Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK, 
4Department of Medicine, University of Cambridge, Wolfson College, CB3 9BB, UK and 5Centro Nacional de Investigaciones Oncológicas 
(CNIO), Madrid 28029, Spain

Email: Vincenzo Calvanese - vincalv@cnio.es; Meera Mallya - mm342@cam.ac.uk; R Duncan Campbell - duncan.campbell@dpag.ox.ac.uk; 
Begoña Aguado* - baguado@cbm.uam.es

* Corresponding author    

Abstract
Background: Regulation of the expression of particular genes can rely on mechanisms that are
different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes
encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion,
consisting of an intron retention event which generates, through an early premature stop codon, a
non-coding transcript, preventing expression in most cell lines and tissues.

Results: The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the
cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be
solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in
the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the
resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and
spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding
transcript. EST database analysis revealed that these genes have an alternative expression pathway
with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR,
revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-
LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like
domain, respectively.

Conclusion: In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not
subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes
form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact
that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera
(CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own.
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Background
In the post-genomic era biological endeavours are more
and more centred on understanding the different mecha-
nisms of regulation of gene expression. An increasing
number of interacting regulatory levels are being explored
and, in this amazing landscape, alternative splicing is even
more interesting because, starting from a relatively limited
number of genes, it is involved in increasing proteome
complexity, [1-3]. In relation to this, alterations of splic-
ing patterns or mis-splicing of genes are involved in sev-
eral pathologies, [4-6] including several genetic diseases
such as spinal muscular atrophy (SMA), myotonic dystro-
phy (MD), Alzheimer's disease (AD), and retinitis pig-
mentosa (for review see [7]). Aberrant splicing has also
been linked to cancer ([8] and refs).

The human Major Histocompatibility Complex (MHC) is
located at chromosome 6p21.3, and is ~4 Mb in length. It
consists of three regions, the class I and class II regions
flanking the central class III region. The class III region is
~0.9 Mb in length and contains 62–64 genes and 2–3
pseudogenes, depending on the haplotype [9,10]. Of the
predicted genes, at least 24 (41%) have a definite or
potential role in the immune system. The human MHC
has been linked to susceptibility to many diseases, and
often these associations cannot be fully explained by var-
iation in the class I and II genes [10,11]. Therefore, the
study of the class III region genes, especially the novel
genes with a potential role in the immune system, may
provide insights into the understanding of these diseases.
Transcriptome studies of some MHC class III region genes
indicate a high rate of different splicing events. Previously,
we have defined precisely the alternative splicing patterns
of a cluster of five genes of the Lymphocyte antigen-6 (LY-
6) superfamily [12] and characterised the expression of
the corresponding proteins [13]. Strong associations have
been found between Rheumatoid Arthritis and the seg-
ment of the MHC class III region which includes these LY-
6 members. The characterisation of these transcripts is of
great relevance for the understanding of human diseases.

LY-6 superfamily members are cysteine-rich, generally
GPI-anchored, cell surface proteins which have definite or
putative immune-related roles [14]. Among these LY-6
MHC class III region genes LY6G5B and LY6G6D showed
a particular behaviour in the regulation of their expression
[12], involving an intron retention event. The intron
retained is the first in the open reading frame and inter-
rupts the protein just after the signal peptide introducing
a premature stop codon. The presence of a premature
block to transcription in this position should cause this
intron-retaining transcript to undergo Nonsense Medi-
ated Decay (NMD) [15-17]. However, this transcript is
present and is generally more abundant than the correctly
spliced partner in all cell lines and tissues analysed [12].

Intron retention is the least characterised event of all alter-
native splicing types, mainly because of the exclusion of
this phenomenon in many studies, due to the difficulty to
differentiate it from genomic DNA or incompletely-proc-
essed transcripts. Moreover, it is not relevant to functional
studies due to the introduction of premature stop codons.
A number of studies indicate that up to 15% of human
genes present at least one intron retention event, and that
at least 22% of all informative intron-retention events are
also present in the mouse transcriptome [18]. Finally,
many intron retention events occur in the 5' and 3'
Untranslated Regions (UTR) [18], that are still incom-
pletely characterised for most genes.

Interestingly, we were also able to detect the presence of
the exons of the LY6G5B and LY6G6D genes in transcripts
derived from the upstream genes in the chromosome. This
phenomenon, known as Transcription Induced Chimer-
ism (TIC), or Tandem Chimerism is still largely unknown
in its mechanism, but it is being promoted as a novel way
to increase combinatorial complexity of the proteome
[19-21]. Recent bioinformatics analyses, partially sup-
ported by experimental validation, show that this phe-
nomenon could be quite frequent (up to 4–5% of the
tandem gene pairs in the human genome) [20]. There are
also cases of TIC described in which a chimeric protein
can be detected or a logical function inferred [22-24].

Here we report a precise description and quantification, of
the transcripts generated by intron retention events, of the
MHC LY6G5B and LY6G6D genes. As these transcripts
have a premature stop codon, they should be degraded
quickly by Non-sense Mediated Decay. Nevertheless, they
seem to be stable and even the most abundant transcript,
especially in tissue samples. This could indicate that these
mis-spliced forms are real transcripts which could have
potential regulatory functions. In addition, we show that
the LY6G5B and LY6G6D genes can form chimeric tran-
scripts with adjacent genes.

Results
LY6G5B and LY6G6D transcript expression
The LY6G6D and LY6G5B genes express a small first
intron (98 and 148 nucleotides, respectively) in the open
reading frame which tends to be retained in the majority
of cell lines and tissues, both in human and mouse RNAs
[12]. To better understand the regulation of expression of
these genes we performed a detailed analysis of the two
transcripts of the LY6G5B gene and their relative levels in
some cell lines and tissues by real time RT-PCR. The
results shown in Figure 1 confirm that the intron-retain-
ing form is the most abundant in all the samples analysed.
The highest expression of this mis-spliced form was
detected in lung, spleen, and in whole blood, and the
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Differential real time RT-PCR assay for the two LY6G5B splice isoforms in a panel of human tissues and cell linesFigure 1
Differential real time RT-PCR assay for the two LY6G5B splice isoforms in a panel of human tissues and cell 
lines. (A). Data are expressed in relation to the percentage of the intron-retained form expressed in blood. Numbers below 
the graph represent the percent of the correctly spliced isoform of LY6G5B relative to the total expression of the gene in each 
sample. PCR reactions were run in triplicates. (B) Schematic representation of the primer design for the differential assay. For-
ward primer (PR_3) is shared while reverse primers (PR_6 and 7) share only 4 nucleotides at the end of the first exon. X indi-
cates the premature stop codon.
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K562 cell line. K562 cells also had the highest expression
of the correctly spliced form.

Transcript localisation, mRNA stability and NMD escape
To ascertain that the intron retaining transcript we
detected in our samples is not a splicing intermediate but
a fully processed and exported mRNA, we performed a dif-
ferential extraction of the nuclear and cytoplasmic RNA
followed by RT-PCR (Figure 2). Correctly spliced mRNAs
should be more stable after termination of transcription
than the non-fully spliced forms containing a premature
termination codon (PTC). To analyse whether that is the
case for the mis-spliced forms, cells were treated with
Actinomycin D, a transcriptional inhibitor, to measure
mRNA decay rates and differences between the splice
forms of the LY6G6D and LY6G5B genes and of other con-
trol genes.

Treatment with Actinomycin D indicated that these mis-
spliced forms were stable in the cytoplasm, though there
did appear to be cell-specific differences in stability for the
LY6G6D gene, which seemed to be unstable in the K562
cell line, but stable in the Raji cell line (Figures 2C and
2D). Interestingly, the mis-spliced (334 bp) form of the
LY6G5B gene was also more abundant in the cytoplasmic
RNA fraction of Raji cells, relative to the correctly spliced
form (187 bp), compared to K562 cells (Figures 2C and
2D). In addition, there appeared to be no differences in
stability between the mis-spliced and correctly spliced
forms of LY6G5B as there was no obvious decay of either
form after transcription was stopped. For LY6G6D we
were only able to amplify the mis-splced 269 bp form,
and not the 178 bp properly spliced form (Figures 2C and
2D). As control RNAs we used the housekeeping genes β-
actin and GAPDH for evaluating abundance and RNA
quality and the β-globin RNA as a control of a stable RNA
transcript (Figure 2A) observing that the RNA was not
degraded by the treatment or by the RNA isolation proce-
dure. We also used c-Myc as a control for unstable mRNA
transcripts and the intron of c-Myc as a control for
genomic contamination of the cytoplasmic RNA fraction
(Figure 2B). The decay of the c-Myc transcript indicated
that the Actinomycin D treatment was effective and the
lack of c-Myc intronic product in the cytoplasmic RNA
fraction showed there was no genomic contamination in
the cytoplasmic fraction. The β-globin amplification
showed genomic, or splicing intermediates, in the nuclear
RNA fraction (upper band of 440 bp) in addition to the
correctly spliced form (lower band of 320 bp), while in
the cytoplasmic RNA fraction we could only detect the
correctly spliced form (320 bp), indicating no genomic
contamination in the cytoplasmic fraction. In the case of
β-actin and GAPDH only the correctly spliced forms of
548 bp and 612 bp, respectively, were obtained in the
amplifications of the nuclear and cytoplasmic RNA frac-

tions. No genomic products (which would be 1123 bp
and 2858 bp, respectively) were observed in either RNA
fraction. All the controls were also performed with Raji
cell extracts and the same results were obtained (data not
shown). The results from all these experiments indicate
that the unspliced LY6 transcripts are real transcripts and
not due to genomic contamination.

We confirmed this experiment by measuring the levels of
the two LY6G5B transcripts by a real time-PCR assay (Fig-
ure 3). In this case expression levels of the two splicing
isoforms were normalised [25] to either GAPDH (Figure
3A and 3C) or β-Actin (Figure 3B and 3D) levels in K562
and Raji cells. As the transcripts for these two control
genes also have their own kinetics of degradation we can-
not measure an absolute stability of LY6G5B, but a relative
stability compared to the control genes. In all cases we
observed an increase in the relative expression of the
LY6G5B isoforms with time, allowing us to conclude that
the LY6G5B transcripts are more stable than Actin and
GAPDH mRNA (Figure 3).

As the intron-retaining transcripts of the two genes have a
PTC they should be subjected to degradation by the NMD
machinery. To see whether this process acts on the non-
coding transcripts we looked at the effect of translational
blockage on stability, as translation of the mRNA has been
shown to be required for NMD, probably for recognition
of PTCs. Cycloheximide inhibits the peptidyl-transferase
on the large subunit of the eukaryotic ribosome, while
puromycin is a tRNA analogue that causes premature
chain termination. If the NMD pathway was in some way
acting on the mis-spliced transcript, we would expect to
see an increase in the intron-retaining form relative to that
of the correctly spliced form (observed as an increase in
PCR product). K562 cells were treated with either
cycloheximide or puromycin and showed no increase in
stability of the mis-spliced forms of LY6G5B and LY6G6D
relative to the correctly spliced forms, suggesting that
these mis-spliced transcripts are not subject to NMD (Fig-
ures 2E and 2F).

Luciferase assay
To understand whether the intron was retained for its own
features such as weakly recognised by the splicing machin-
ery, or in a regulated fashion dependent on the molecular
environment, the first introns of LY6G5B and LY6G6D
were cloned in the 5' and 3' UTRs of a pGL3 control luci-
ferase plasmid (Figure 4A). As some splicing factors inhib-
iting 5' splice site recognition, like hnRNP-F/H, have been
described to bind just upstream of the 5' splice site
[26,27], we also created some constructs containing 25
bases of the first exon just upstream of the intron, to gen-
erate part of the natural sequence context (Figure 4B). The
results obtained showed, surprisingly, that the intron is
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RT-PCR results of Actinomycin D (A, B, C, D,) Cycloheximide (CHX) (E), and Puromycin (PUR) (F) treatmentFigure 2
RT-PCR results of Actinomycin D (A, B, C, D,) Cycloheximide (CHX) (E), and Puromycin (PUR) (F) treat-
ment. As controls the β-Actin, β-Globin and GAPDH genes (A) and the c-Myc transcript and c-Myc intron (B) were tested 
using nuclear (N) or cytoplasmic (C) RNA from the K562 cell line. Time points were as follows: Nuclear (N) Time 0, 1, 2, 4 
hrs,, Cytoplasmic (C) Time 0, 1, 2, 4 hrs. For the LY6G5B and LY6G6D samples (C, D, E, F) the higher sized product is always 
the intron retaining one (indicated by an arrow) while the lower one is the correctly spliced form. Markers are indicated in Kb.
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Real Time-PCR to quantify the amount of intron-retained and intron-spliced forms of the LY6G5B transcripts in K562 (A, B) and Raji (C, D) cell lines harvested at times 0, 0.5, 1, 2 and 4 hrs post treatment with Actinomycin DFigure 3
Real Time-PCR to quantify the amount of intron-retained and intron-spliced forms of the LY6G5B transcripts 
in K562 (A, B) and Raji (C, D) cell lines harvested at times 0, 0.5, 1, 2 and 4 hrs post treatment with Actinomy-
cin D. Data are expressed as the percentage of each form at time 0 with no treatment. PCR reactions were run in triplicate.
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Luciferase assay with cloned retained intronsFigure 4
Luciferase assay with cloned retained introns. Schematic representation of the constructs used in the luci-
ferase assay (A and B). Luc refers to the firefly luciferase ORF while GT- to the exon-intron boundary and -AG to the 
intron-exon boundary. 3' indicates the position of insertion relative to the luciferase ORF. In B dark grey rectangle represents 
the 25 nt of LY6G5B exon 1 added to the construct. (C) RT-PCR with primers PR_36, 37 and 38, and PR_41 on cDNA derived 
from transfected cells to identify spliced transcripts from the various plasmids. pGL3CTR+25 and pGL3G5BF+25 represent 
positive controls where the PCR reaction was performed on the original plasmids. Results of the luciferase assay (C and E) 
expressed as the relative response ratio, normalised for Renilla luciferase signal, and relative to the control.
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fully spliced in this artificial mRNA assay, as the size of the
amplified product from RNA derived from cells trans-
fected with the G5BF+25 plasmid, which contains the
intron in the 5'UTR of the luciferase construct, is the same
as the control CTR+25 (Figure 4C). When the luciferase
assay was performed in these transfected cells, surprisingly
we found that the luciferase signal was increased more
than 2.8 fold when the intron of LY6G5B (G5BF) was
inserted in the 5' UTR in the correct orientation, probably
due to a strong stabilisation effect [28] when splicing
occurs in this position (Figure 4D). This effect is also
observed, although to a lesser extent, in the construct with
the 25 bp of the LY6G5B first exon (G5BF+25) (Figure 4E)
and is not observed with the LY6G6D intron (G6DF) (Fig-
ure 4D). Constructs that retain the intron, the one with
the intron in the reverse orientation (G5BR) (Figure 4A
and 4D) and G5BR+25 (Figure 4B and 4E) and the other
with the mutated intron boundaries (G5BMut+25 in Fig-
ure 4D), show a markedly lowered expression of the luci-
ferase. This could be due to the presence of other start
codons in the intron in both orientations, which are not
in phase with the luciferase ORF.

EST analysis of the LY6G5B and LY6G6D genes
To better define the expression pattern of these genes in
order to characterise the UTRs and to support our data on
intron retention in the expressed transcripts, we per-
formed a detailed EST analysis on the two genes. We pre-
viously [12] presented an EST analysis, but at that time
only two ESTs were found for each of the two human
genes (Acc. no AI800033 and AA535815 for LY6G6D;
AI446559 and R79468 for LY6G5B), making it difficult to
completely define the gene. For LY6G6D there is only one
additional EST from the 2002 analysis [12] that aligns
with the whole intron-retaining transcript; while the pre-
viously described ESTs only cover exon 3 of the gene.
Thus, there is still no EST corresponding to the correctly
spliced and protein expressing form, despite the fact that
we could find the correctly spliced form in many human
tissues [12]. This is most likely due to the small number of
ESTs, especially for low expression transcripts, and to the
limitations of the EST data bank that often presents only
partial sequences.

In contrast, our recent analysis has revealed that for
LY6G5B there are a total of 25 ESTs covering the whole
gene, part of the 5' UTR and 3'UTR (Figure 5 and Table 1).
An additional intron and a fourth exon are probably
present in the 3'UTR, as many ESTs map in that region. At
least 6 out of the 23 ESTs containing exon 3 continue for
about 200 bases after the stop codon where the alignment
is interrupted, then most of them align with a region
about 750 bases downstream of the end of the exon, just
downstream of an AluSX element. Another Alu repeat of
the family AluJB is contained in the second intron. Two

ESTs (BQ447231 and BQ181819) contain a final polyA
signal that defines a fourth and last exon of at least 320
bases. We could also define a large 5'UTR for the LY6G5B
gene, as one EST (BQ181819, number 24 in Figure 5)
extends up to 315 bases upstream of the translation start
site. Among all ESTs we only found two (BF820976 and
CT001189, corresponding to numbers 23 and 22 in Fig-
ure 5) which cover the entire exon 1, intron 1, exon 2
region. Surprisingly three ESTs (CF264683, BX363221
and BX363222, corresponding to numbers 1, 5 and 13 in
Figure 5) of the human LY6G5B transcript align with some
exons of the gene found upstream in the genomic
sequence, the Casein kinase II beta subunit (CSNK2B)
(Figure 5), suggesting the presence of transcriptional
induced chimerism.

Chimeric transcripts
To prove the presence of the chimeric transcript for
LY6G5B we performed RT-PCR using primers from the
second, fifth and sixth exons of the CSNK2B gene and the
third exon of LY6G5B (Figure 6A). We found a defined
pattern of bands (Figure 6B) in Raji, K562 and U937 cells
whose sequences represent many combinations of exons
from the two genes (Figure 6A). Three main bands of
1090, 936 and 900 bp were found when the nested RT-
PCR was performed for the whole chimeric transcript. The
first (1090 bp) corresponds to exons 2 to 6 of CSNK2B
spliced to exons 2 and 3 of LY6G5B though the resulting
chimeric transcript is not in frame with the LY6G5B ORF.
The other two bands of 936 bp and 900 bp correspond to
exons 2 to 5 of CSNK2B spliced to the last 36 nucleotides
of exon 1 and exons 2 and 3 of LY6G5B (936 bp), or
directly to exons 2 and 3 of LY6G5B (900 bp) which main-
tain the LY6G5B ORF. Other less abundant transcripts
were also detected (see Figure 6A) which were confirmed
when primers from exons 5 or 6 of CSNK2B were used in
the PCR reactions (Figures 6C and 6D). Amplification
under the same conditions of the CSNK2B gene using
primers from exons 2 and 7 resulted in the appearance of
a single band of 645 bp (Figure 6E) corresponding to only
one RNA form, the one described in the literature [29].

Interestingly, when we performed BLAST analysis of the
LY6G6D protein we found a perfect match to part of the
human megakaryocyte-enhanced gene transcript 1
(MEGT-1) protein (E value of 2e-50; data not shown)
already deposited in GeneBank as a fusion gene with the
accession number AF195764. The MEGT-1 protein also
showed a perfect match to the translation of exons 1–4 of
the G6F gene. The G6F gene (AF129756), which is
expressed in platelets [30,31], encodes a novel member of
the immunoglobin superfamily [32]. G6F consists of six
exons, LY6G6D of three exons and they are separated by
the three exons of LY6G6E, which are theoretically tran-
scribed in the reverse orientation to G6F and LY6G6D
Page 8 of 17
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(Figure 7A). We then confirmed that the MEGT-1 tran-
script consists of exons 1–4 of G6F, which then splice to
exons 2 and 3 of LY6G6D, skipping exons 5 and 6 of G6F,
all of LY6G6E and exon 1 of LY6G6D (Figure 7A).

To examine the expression patterns of the G6F/LY6G6D
chimera, two different RT-PCR reactions were performed
in a number of different human cell lines, one amplifying
from exon 1 of G6F to exon 3 of LY6G6D, and the other
amplifying from exon 4 of G6F to exon 3 of LY6G6D, to
see whether a shorter transcript was also present (Figure
7A) as exon 4 of G6F, which normally codes for the trans-
membrane region of the protein, could act as a signal pep-
tide. Southern blot analysis (Figure 7B) showed that there
are different transcripts produced from the G6F exon 1 –
LY6G6D exon 3 amplification (long chimera). A ~1.2 kb
doublet is present mainly in the K562 cell line as well as a
faint band at ~900 bp and a band at ~500 bp (Figure 7B).
The 1.2 kb band is also present faintly in the HL60, Jurkat
and Molt4 cell lines corresponding to the expected tran-

script, consisting of exons 1–4 of G6F, spliced to exons 2
and 3 of LY6G6D (1148 bp). This would translate to give
a chimeric transcript containing the Ig domain and the
transmembrane region of G6F fused to the LY-6 domain
of LY6G6D. The upper band of the ~1.2 kb doublet con-
sists of exons 1–5 of G6F spliced to exons 2 and 3 of
LY6G6D (1248 bp) which translate to a G6F protein
including the transmembrane domain and a cytoplasmic
domain due to an inframe amino acid sequence encoded
by exons 2 and 3 of LY6G6D. Other secondary bands have
been cloned and are represented in figure 7A, but none
retain the LY-6 ORF.

Splice variants of the expected ~450 bp shorter form of the
chimera (exon 4 of G6F and exons 2–3 of LY6G6D) were
seen in all cell lines except HeLa, with the strongest signal
in the K562, Jurkat, Molt4, and 143B cell lines (Figure
7B). After sequence analysis three different splice variants
were found; including the expected form of 453 bp which
results in a signal peptide followed by the LY-6 domain.

Alignment of LY6G5B EST sequences (black boxes) on the genomic region comprising the genes CSNK2B and LY6G5BFigure 5
Alignment of LY6G5B EST sequences (black boxes) on the genomic region comprising the genes CSNK2B and 
LY6G5B. Grey boxes represent exons and its dimension is proportional to the real length. Striped boxes represent the posi-
tion of the Alu repetitive elements. Numbers on the right are referred to in Table 1.
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Other secondary bands are shown in the figure but they
lose the LY-6 ORF and do not match with any known or
predicted protein.

Discussion and conclusion
During the last fifteen years a major effort has been cen-
tred on describing the number and the position of all
human genes and this aim has been achieved through a
combination of advances in sequencing technologies and
bioinformatics prediction programs. Nevertheless, there
are still a considerable number of genes that remain
uncharacterised, and even more where we know virtually
nothing of their transcriptional control including their
differential tissue expression and splicing regulation. In
addition, bioinformatics tools are becoming very accurate
in organising biological information and predicting the
structure and function of genes, but sometimes adjust-
ments in data processing can affect the conclusions which
can be drawn. For instance, in the case presented here, the
fact that non-coding transcripts sometimes are excluded
from analyses and databases, to avoid the risk of consid-
ering non-fully processed intermediate transcripts, could
cause a significant underestimation of the frequency of
intron retention transcripts.

Alternative splicing is understood as a regulatory process,
contributing to biological complexity through its ability
to control the expression of proteins. An mRNA variant
has been defined as being 'functional' if it is required dur-
ing the life-cycle of the organism and activated in a regu-
lated manner. In some cases, functional splice forms may
not even be required in their own right, but their produc-
tion is required to regulate active protein levels. Moreover,
the meaning of 'required' can be generalized by defining
functional splicing as that which conveys a selective
advantage [33].

The extent to which splicing has a role in disease, as either
a direct cause, a modifier or a susceptibility factor, contin-
ues to be defined. Advances in several areas will clarify the
roles of splicing in disease and reveal the mechanisms
involved, and will allow routine application of the knowl-
edge gained toward diagnosis and treatment. One major
advance will be to develop the ability to predict splicing
outcomes associated with genetic variants and disease-
causing mutations [28]. Important insights will be gained
from the full characterization of the human transcrip-
tome, which would provide a catalogue of all the splice
variants expressed from each gene and identification of

Table 1: LY6G5B ESTs. 

ACC. NO TISSUE EX1 INT1 EX2 EX3 CHIM NO. Fig 5

BX505974 ADULT X 3
BX644716 ADULT X 10
CF264683 BRAIN GLIOBLASTOMA 1/2 X X X 1
AW852310 COLON X 6
BE697652 COLON X 21
BG999849 HEAD X X 20
BE710662 HEAD-NECK X X X 16
BX363221 HELA CELLS X X X 5
BX363222 HELA CELLS X X X 13
BF820976 KIDNEY TUMOR X X X X 23
AW581385 LEIOMIOS X 17
AW608502 LEIOMIOS X 19
CB132428 LIVER 1/2 X X 2
BP305317 MACROPHAGE X 11
BI041577 NERVOUS TUMOR X 8
BM687278 OPTIC NERVE X X X 12
BQ447231 OSTEOARTHRITIC CARTILAGE X 14
BQ181819 OSTEOARTHRITIC CARTILAGE X X 24
R79468 PLACENTA X 15
BI052431 PLACENTA X X 18
BG015680 PLACENTA NORMAL 1/3 X X 9
BI049844 PLACENTA NORMAL X X 25
BE768359 PROSTATE TUMOR X 7
BX437637 THYMUS X 4
CT001189 T-LYMPHOCITES X X X X 22

Columns are marked with a X if the EST contains the whole sequence. CHIM column is marked if any sequence of CSNK2B is present. 1/2 and 1/3 
mean that only this proportion of the sequence is present in the EST.
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Nested RT-PCR to characterise chimeric products between CSNK2B and LY6G5BFigure 6
Nested RT-PCR to characterise chimeric products between CSNK2B and LY6G5B. (A) Schematic representa-
tion of the cloned and sequenced products on the genomic structure. Arrows represent primers used whose 
number corresponds with the number in Table 2. On the right are reported the length of the product as represented in the fig-
ure. Dashed boxes indicate inframe protein sequence. Each set of primers was tested in the indicated cell lines: primers from 
exon 2 (B), exon 5 (C) or exon 6 (D) of CSNK2B with exon 3 of LY6G5B. In E we report the RT-PCR for the CSNK2B ORF, 
from exon 2 to 7, is shown. X indicates premature stop codon.
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the isoforms that predominate in specific cell types and
tissues. This is a significant challenge that will have a huge
benefit, not least being the ability to design microarrays
that can be applied for the quantitative assessment of all

splice variants. Finally, another key direction for the
future will be the application of genome-wide microarray
assays to assess splicing differences associated with nor-
mal variation and with disease. Alternative-splicing signa-

Table 2: Primers

Primer Name Sequence

PR_1 G5Bh-int-F ATGAAGGTCCATATGCTTGTAGG
PR_2 G5Bh-int-R CATAATAGATGGTGATCACCATGCAC
PR_3 G5Bh-UTR-F CTCAGGAACTGCCCATCTCCCCAG
PR_4 G5Bh-UTR-R GGGTGTTACAGAAAGATATTTGCAC
PR_5 G5Bh-ex3-R TCAGGAAGGGTGAGGTGTCAAG
PR_6 G5B real time_spl TGTCGGGAACAGGAACCTTT
PR_7 G5B real time_ret GGGCCCCACTTACCCTTT
PR_8 G6Dh-int-F ATGAAACCCCAGTTTGTTGGG
PR_9 G6Dh-int-R GGTTTCCAGGTAGCTTGATCTGTTCC
PR_10 G6Dh-UTR-F GGTCCTGACACGGGCAGACTGC
PR_11 G6Dh-UTR-R GTTCCCTTCTCTACTCCTACTCCCC
PR_12 G6Dh-ex3-R CTATCCGCTCCACAGTCCTGG
PR_13 b-actin-F CTTCGCGGGCGACGATGC
PR_14 b-actin-R TGGTGGTGAAGCTGTAGCC
PR_15 b-globin-F ATGGTGCATCTGACTCCTGAGG
PR_16 b-globin-R CTGAAGTTCTCAGGATCCACGTG
PR_17 GAPDH-F ATGGGGAAGGTGAAGGTCGGAGTC
PR_18 GAPDH-R GCGGCCATCACGCCACAGTTTC
PR_19 cMYC RT-F ATGCCCCTCAACGTTAGCTTCACC
PR_20 cMYC RT-R CAGGACTTGGGCGAGCTGCTG
PR_21 cMYC intr-F CAGGCTTAGATGTGGCTCTTTGGG
PR_22 cMYC intr-R TTCGCCTCTTGACATTCTCCTC
PR_23 GAPDH_REALT-F ATCAGCAATGCCTCCTGCAC
PR_24 GAPDH_REALT-R GGCATGGACTGTGGTCATGA
PR_25 ACTIN_REALT-F GATCATTGCTCCTCCTGAGC
PR_26 ACTIN_REALT-R CCTGCTTGCTGATCCACATC
PR_27 g5biF hindIII CGGAAGCTTGTAAGTGGGGCCCAGGGGCAGGGAG
PR_28 g5biR hindIII CGGAAGCTTCTGGGGAGGCAGAAGGAGGGATGGA
PR_30 g6diF hindIII CGGAAGCTTGTAAGGAGGCGGCCAGCTAGCTTCT
PR_31 g6diR NcoI CGGCCATGGCTGGCAGGAGAAAAGAGGCGCTGGA
PR_32 g5biF PstI CGGCTGCAGGTAAGTGGGGCCCAGGGGCAGGGAG
PR_33 g5biR EcoRV CGGGATATCCTGGGGAGGCAGAAGGAGGGATGGA
PR_34 g6diF PstI CGGCTGCAGGTAAGGAGGCGGCCAGCTAGCTTCT
PR_35 g6diR EcoRV CGGGATATCCTGGCAGGAGAAAAGAGGCGCTGGA
PR_36 G5BF+25 GAAGCTTGGTGGGCTTCACAGTAGGAAAGGAAGCTTC
PR_37 G5BR+25 GAAGCTTCCTTTCCTACTGTGAAGCCCACCAAGCTTC
PR_38 G5BMutF+25 CGGAAGCTTCTGCAGCAAAGTGGGGCCC
PR_39 G5BMutR+25 GCCAAGCTTGATATCTCGGGGAGGCAGA
PR_40 pGL3c39f CTGCGATCTGCATCTCAATTAG
PR_41 pGL3c489r ATATCGTTTCATAGCTTCTGCCA
PR_42 CSNKh-ext-ex1-2 CCGTCCAGCCGCTGACGTGAAG
PR_43 CSNK-int-ex2 ATGAGCAGCTCAGAGGAGGTGTC
PR_44 CSNK-ext-ex5 GACTTTGGTTACTGTCCTCGTGT
PR_45 CSNK-int-ex5 TGTGAGAACCAGCCAATGCTTCC
PR_46 CSNK-ext-ex6 GACATCCCAGGTGAAGCCATGG
PR_47 CSNK-int-ex6 CTCTACTGCCCCAAGTGCATGG
PR_48 CSNKh-ext-R CAAAGACTGCAGGACAGGTGG
PR_49 CSNK-int-R TCAGCGAATCGTCTTGACTGG
PR_50 G6Fh-ext-ex1 CAAGAGAACTTGGCAGGCTC
PR_51 G6Fh-int-ex1 CCCCATGGCAGTCTTATTCC
PR_52 G6Fh-ext-ex4 CCCTCTGTGCCCCTTCCACG
PR_53 G6Fh-int-ex4 GGGACATGCCTTGGATTCTG
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Nested RT-PCR to characterise chimeric products between G6F and LY6G6DFigure 7
Nested RT-PCR to characterise chimeric products between G6F and LY6G6D. (A) Schematic representation of the 
cloned and sequenced products on the genomic structure. Arrows represent the primers used, whose number corresponds 
with the number in Table 2. X indicates premature stop codon. Dashed boxes indicate inframe protein sequence. (B) Southern 
Blot of the PCR products to identify specific bands. Primers used in PCR on indicated cell lines: primers from exon 1 and exon 
4 of G6F with exon 3 of LY6G6D. (B:143B, K1:K562, M:Molt4, He:HeLa, J:Jurkat, U:U937, R:Raji, H:HL60, K2:K562 of different 
origin than K1, N:negative)
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tures are likely to provide a useful diagnostic and
prognostic tool for many diseases. As for other challenges,
the tools that are required to meet this challenge are devel-
oping rapidly [1].

Here we have presented a detailed transcriptional analysis
of the LY6G5B and LY6G6D genes. The striking feature
which was observed in a first analysis was the intron reten-
tion event that generated a non-coding transcript. In fact,
the protein coding transcript of these genes is the one
described in databases, but we found that, by the reten-
tion of the first intron, its expression is nearly completely
silenced. This event seems not just to be an inherent fea-
ture of the introns because they are spliced correctly when
the introns are inserted in an artificial construct, such as
the luciferase expression plasmid used in this study,
although they are also able to markedly stabilise the arti-
ficial transcript. In order to be retained the introns must
be in the genomic environment of their particular Ly-6
genes, and for this reason might have a regulatory role in
these genes. In addition, by real time RT-PCR we found
that the retained and spliced forms are differentially
expressed in tissues, indicating an active regulation of the
non-coding transcript. We propose that when the gene is
expressed the intron retention event could be regulated by
a cis-acting element, acting on the processing machinery.
It could be possible that this block in the expression is
released only in a precise physiological response or at a
particular developmental stage or in a specific pathologic
process. Related to this, Yan et al. (2005) [34] showed a
novel gene Saf, transcribed from the opposite strand of a
noncoding intronic region of the Fas gene, that acts in cis
and regulates alternative splicing forms of Fas. In addi-
tion, noncoding RNAs are abundantly transcribed from
the introns of 74% of all RefSeq genes [35] and could be
involved in regulation of alternative splicing in response
to physiological and pathologic conditions.

Another possibility is that the chimera represents an alter-
native way for the expression of the protein, that borrows
the promoter of the preceding gene to be expressed and
then by a combination of transcript and protein process-
ing reaches its final expressed form. In the case of the G6F-
LY6G6D chimera, for example, the MEGT-1 protein
would encode two extracellular Ig domains, a transmem-
brane segment and then the LY6G6D LY-6 domain intra-
cellularly. Interestingly, the fact that exon 4 of G6F could
encode a signal peptide starting with a methionine resi-
due and that there is a long intron between exons 3 and 4
in G6F, suggests the presence of a promoter region specific
for the shorter transcript. The possibility of an alternative
promoter in this case is also supported by the expression
results, as the short chimera seems to be expressed in
nearly all analysed cell lines while the long chimera is

expressed mainly in the K562 cell line, which is also the
only cell line that expresses G6F.

The particular behaviour of these genes could be more
general, strengthening the importance of a detailed tran-
scriptional analysis of every gene, because their physiolog-
ical and pathological roles could be based on unexpected
forms of expression regulation. Susceptibility to human
diseases is associated with genes in the MHC class III
region. Microsatellite and SNP genotyping studies have
attempted to fine map the location of these genes, finding
strong associations between Rheumatoid Arthritis and a
126 Kb region in the MHC class III region, which include
these LY-6 members. The characterization of the LY-6
transcripts is of great relevance for the understanding of
human diseases.

Methods
Cell cultures and treatments
The cell lines Jurkat (T cell), U937 (monocyte), Raji (B
cell), HL60 (monocyte), Molt4 (T cell), and K562 (undif-
ferentiated erythroleukaemia) were grown in RPMI
medium while Hek293T (embryonic kidney), HeLa (epi-
thelial), 143B (TK-) (osteoblast) were grown in DMEM,
all with 10% (v/v) foetal bovine serum (FBS), 100 IU/ml
penicillin and 100 μg/ml streptomycin. Cells to be treated
with Actinomycin D (5 μg/ml), Puromycin or Cyclohex-
imide (both 300 μg/ml) were plated at 5 × 106 cells and
grown for 24 hours prior to the addition of the reagent.
Cells were incubated with the reagent for 0, 30 min, 60
min, 120 min and 240 min prior to harvesting.

RNA extraction, RT-PCR and Real Time-PCR
The SV RNA isolation kit (Promega) was used for RNA iso-
lation from frozen pellets containing 5 × 106 cells fol-
lowed by DNAse treatment. Human tissue RNAs were
obtained from BioChain® (USA) http://www.bio
chain.com through one of their Europe distributor "ams"
http://www.amsbio.com (UK). One μg of total RNA
obtained from each sample was used for oligo-dT primed
cDNA synthesis which was performed using the ImProm
Reverse Transcription System (Promega) in a 20 μl reac-
tion volume following the manufacturer's instructions.
Initial experiments were performed to check for the pres-
ence of these gene transcripts in the cytoplasmic fraction
of the cell and to optimise the fractionation procedure
(data not shown). The fractionantion was performed
using the Qiagen RNeasy mini kit cytoplasmic RNA
extraction protocol. We improved the method for our cell
types, by using 5 × 106 K562 cells and 1 × 107 Raji cells. We
spun intact cells at 2000 rpm and lysed them in modified
RLN buffer (10 mM Tris pH8, 100 mM NaCl, 1.5 mM
MgCl2, 0.5% NP40, 1000 U/ml RNasin and 1 mM DTT).
The cytoplasmic-nuclear fraction was separated by spin-
ning at 1800 rpm for 2 minutes. The cytosolic fraction was
Page 14 of 17
(page number not for citation purposes)

http://www.biochain.com
http://www.biochain.com
http://www.amsbio.com


BMC Molecular Biology 2008, 9:81 http://www.biomedcentral.com/1471-2199/9/81
taken and RLT buffer added and processed as described in
the Qiagen protocol. To the nuclear fraction was also
added FLT buffer and processed as described in the proto-
col. For Reverse Transcription-PCR (RT-PCR) 1 μl of
cDNA was used in each PCR reaction. All RT-PCR reac-
tions contained 2 mM MgCl2, 0.8 mM dNTPs, 0.4 μM
each primer and 0.75 U Taq polymerase (Roche) in a 25
μl reaction volume. The PCR conditions were as follows:
95°C for 2 min followed by 35 cycles of 95°C for 45 s,
60°C for 30 s, 72°C for 30 s, followed by 72°C for 5 min.
The primers used for b-actin were PR_13 and PR_14, for
b-globin PR_15 and PR_16, for GAPDH PR_17 and
PR_18, for cMyc PR_19 and PR_20, and for cMyc-inronic
PR_21 and PR_22. The primers used for the amplifica-
tions of LY6G6D were PR_8 ad PR_12 and for LY6G5B
were PR_1 and PR_5.

Real-time RT-PCR for LY6G5B was performed by using
SYBR® green PCR master mix and the ABI PRISM® 7700
sequence detection system (Applied Biosystems). Primers
for real-time RT-PCR were designed for the differential
quantification of the intron retention event, with a com-
mon forward primer and two reverse primers, one span-
ning the exon-intron junction for the intron retaining
form and the other spanning the exon-exon junction for
the correctly spliced form (PR_1, 6 and 7, respectively). As
the intron retaining transcript cDNA does not differ at all
from the genomic DNA and the correctly spliced form dif-
fers for only 148 bases of the intron, we always performed
a RT minus (RT-) reaction for each sample (a reverse tran-
scription reaction identical to the one described in the
previous section, but without adding the reverse tran-
scriptase) to check for lack of amplification, or consist-
ently later amplification than the corresponding RT-
treated sample (more than ten cycles of difference). Quan-
tifications were always normalised using endogenous
control GAPDH (PR_23 and 24) or β-actin (PR_25 and
26). To compare levels of the two isoforms in the same
sample we had to perform an absolute quantification of
the two isoforms in each sample [25]. To achieve this, we
generated standard dilution curves. The two splicing iso-
forms of the LY6G5B gene were first amplified by nested
PCR from K562 cDNA with the primers PR_1, 2, 3 and 4,
then purified from a gel and cloned into the pGEM-T plas-
mid (Promega). The plasmid DNA was isolated,
sequenced, then quantified precisely and diluted to the
same copy number per millilitre. Serial dilutions of 1 in 5
volumes were then run in a real time RT-PCR assay with
the primers PR_1, 6 and 7 generating the final curve to
interpolate results from the cDNA samples.

Luciferase assay
The control plasmid pGL3 (Promega) was modified to
contain an insertion site (PstI and EcoRV) in the 3'UTR of
the firefly luciferase open reading frame (ORF). This was

used as the starting plasmid for all the constructs in Figure
4A. Constructs containing introns were made by PCR
amplification of the intron from genomic DNA using gene
specific primers containing different restriction sites: Hin-
dIII for the LY6G5B intron (PR_27, 28), HindIII and NcoI
for the LY6G6D intron (PR_30, 31) for the 5'UTR cloning,
and PstI and EcoRV for the 3'UTR cloning (PR_32, 33, 34,
35). Either pGL4.11 or pHRL (Promega) containing the
renilla luciferase ORF were used as control for transfection
efficiency. In order to be able to determine the role of the
5' flanking region in the intron of LY6G5B, and to be able
to look at the splicing of the intron by RT-PCR, we created
another construct by inserting the synthetic oligonucle-
otide (PR_36, 37), representing the last 25 bases of the
LY6G5B exon 1, in the HindIII restriction site of the pGL3
control plasmid described above. The same insert of the
LY6G5B intron was inserted in this new control plasmid
in both orientations as well as a mutated version of the
intron where the GT...AG boundaries were mutated to
CA...GA with the primers PR_38 and PR_39 and HindIII
digestion. This plasmid was used as control for intron
retention. All constructs were sequenced with primers
PR_40 and PR_41 to confirm the presence of the correct
sequence. For the transfection Hek293T cells (1 × 106)
were seeded in 60 mm dishes and 24 hours later were
transfected with 2 μg DNA (Luciferase plasmid and
Renilla plasmid in a 20:1 quantitative proportion), using
PolyFect (Qiagen) following the manufacturer's instruc-
tions. Two days after the transfection, cells were harvested
in PBS, then a tenth of the total cells for each plate were
transferred to a 96-well plate in duplicate and luciferase
and renilla activity were sequentially measured using the
Dual-Glo™ Luciferase Assay System (Promega) kit. The
remaining cells were pelleted and the RNA extracted to be
quantified by Real Time-PCR as described above.

EST Data-base analysis
The EST analysis was performed for the two genes by sub-
mitting the sequence of each exon and of the first intron
to a BLAST analysis in the human EST database at the
National Center for Biotechnology Information (NCBI)
http://www.ncbi.nlm.nih.gov/BLAST, and the matching
EST clones identified and aligned.

Nested RT-PCR and Southern blot analysis for chimeric 
transcripts
For the CSNK2B-LY6G5B chimera the first round of PCR
was performed with external primers in exons 1, 5 or 6
(PR_42, 44, 46) of CSNK2B and in the 3'UTR of LY6G5B
(PR_4), and the second round using primers just down-
stream of the first round ones (PR_43, 45, 47 and 2). PCR
reagents and conditions were the same as described
above. For the second round 1 μl of a 1:10 dilution of the
first round product was used as template. The PCR prod-
ucts were gel purified, cloned and sequenced (at least
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three clones for each band) then aligned to the genomic
sequence. For the G6F-LY6G6D chimera the first round of
PCR was performed with external primers in exons 1 or 4
of G6F (PR_50, 52) and in the 3'UTR of LY6G6D (PR_11),
and the second round using primers just downstream of
the first round ones (PR_51, 53 and 9). To verify that the
products obtained were specific Southern blot analysis
was performed. Specific products were detected using a
probe consisting of exon 3 and the 3' UTR of LY6G6D, cre-
ated by digesting IMAGE clone 2321242 (Accession
number AI800033). The probe was labeled with fluores-
cein-11-dUTP as detailed in the manufacturer's protocol
for ECL random prime labelling and detection systems,
version II (Amersham Life Science). The signal was
detected by Enhanced Chemiluminescence (ECL) and vis-
ualised by autoradiography. The PCR products of the
K562 cell line for the PR_51 and 9 amplification (long
chimera) and of the HL60 cell line for the PR_53 and 9
amplification (short chimera) were also cleaned (Qiagen
PCR columns) and subcloned into the pGEM-T vector for
sequencing.

Statistics
The results are expressed as mean ± s.e.m. of the number
of experiments indicated in the figure legends. The data
were analysed by ANOVA and a probability level of P <
0.05 was considered to be statistically significant.
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