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Abstract

Background: Potato virus X has been developed into an expression vector for plants. It is widely
used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned
into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage,
the foreign genes are not expressed. However, if the foreign gene is expressed, the construction
work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one
foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-
2) VPI could not be sub-cloned into the vector and amplified without mutation (frame shift
mutation).

Results: A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter
activity was studied with Northern blots and Real-time RT-PCR.

Conclusion: It is important to recognize the homologous promoter sequences in the vector when
a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected
expression of the CPV-2 VPI gene (not in the target plants, but in E. coli) can interrupt the

downstream work.

Background

Potato virus X (PVX), a potexvirus, is a filamentous rod-
shaped virus which contains a single plus-sense RNA mol-
ecule. The RNA is capped, polyadenylated, and encodes
five open reading frames (ORF)[1]. PVX was designed to
express foreign genes|2]. Its coat promoter was duplicated
in the vector to drive the foreign ORF transcription. The
PVX vector has been used to express foreign genes in many
host plants[3], in translation studies[4], and for investi-
gating gene silencing|[5]. In the current study, the PVX vec-
tor was used to express the gp53 gene of BVDV Singer
strain|6] and VP1 of CPV-2[7] for vaccine development in

a plant vector. The construction of the PVX vector required
the new plasmid to be amplified in E. coli before inoculat-
ing plants, which would be necessary to construct a plant
virus vectored viral genes for a vaccine for these two
viruses.

In molecular cloning, plasmids need to be amplified in E.
coli to produce enough plasmid DNA for molecular
manipulation. The foreign gene in the expression vectors
is not expressed until it is in a eukaryotic host cell; thus, it
was surprising to find, when the plasmid was amplified in
E. coli, the foreign gene was expressed and it killed the bac-
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teria. Cryptic promoter is the promoter homologous
sequence that distribute randomly. It was previously
reported that there was a cryptic promoter associated with
a toxic gene in potato virus Y (PVY) that interrupted clon-
ing work in E. coli[8]. The cryptic promoter in PVX has not
been reported before. When the eukaryotic expression
vectors are derived from viruses, certain viral sequences
might be recognized as promoter elements. We tried to
sub-clone two animal viral genes into the PVX vector;
however, only the gp53 ORF from BVDV was successfully
sub-cloned. The other gene, the CPV-2 VP1, could not be
sub-cloned into the PVX vector, probably because it was
toxic to E. coli when expressed. If VP1 had not been
expressed in E. coli, the cloning would have been possible
and the cryptic promoter in the PVX vector would not
have been found, as occurred when the gp53 ORF was
sub-cloned in the PVX vector and transcribed. The tran-
scription initiation site was determined with RT-PCR. The
cryptic promoter activity from PVX was compared with
that of the T7 promoter with Real-time RT-PCR.

Results and discussion

Comparison of the PVX cryptic promoter with the
conserved prokaryotic promoter

The similarity of the end element of the triple block
sequences in PVX and the prokaryotic conserved sequence
of -10 and -35 were compared (Figure 1). The conserved
promoter sequences of prokaryotic organisms are -10
TATAAT and -35 TTGACA, separated by 16-18 base pairs.
The prokaryotic homologous element in the PVX vector
matched over 50% of the prokaryotic conserved promoter
sequence. The homologous element was considered as the
cryptic promoter sequence and it was hypothesized to
drive the transcription of foreign genes.

Transcription of foreign genes driven by the cryptic
promoter on the PYX vector

Both the BVDV gp53 and the CVP-2 VP1 foreign genes
were sub-cloned into the PVX vector. However, only the
gp53 ORF in the plasmid could be expressed. In the PVX
vector, the cloned VP1 fragment always had a mutation
near the start codon (data not shown). We hypothesized
that there was a cryptic promoter driving the foreign gene
to be transcribed, which lead to expression of a toxic VP1
protein that killed the E. coli during plasmid amplifica-
tion.

In order to demonstrate the existence of cryptic promoter,
E. coli was transformed with the PVX vector, pgR106gp53
plasmid. After a four hour culture, the total RNA was iso-
lated. Northern blots showed the foreign gene gp53 was
transcribed (Figure 2). With the gp53 specific probe in
Northern blots, the pgR106gp53 transformed E. coli
showing a band of about 1 kb; whereas, the plasmid
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pgR106-transformed E. coli (without the foreign gene) did
not. This suggests that cryptic promoter activity existed.

Determination of the site of transcription initiation

If the hypothesis regarding the cryptic promoter position
was correct (Figure 1), the gp53 RNA in E. coli should have
a 5' untranslated region (5'UTR) from the PVX vector.
Based on the sequence behind the cryptic promoter, three
different primers in front of the gp53 ORF (Figure 1) and
an antisense primer from gp53 sequence (200 bp down-
stream) were designed to run RT-PCR. Only Primer 1
(nearest to start codon) could amplify the cDNA of gp53.
The 5'UTR is about 10 base pairs long (Figure 3). A nega-
tive control plasmid (only the vector, without gp53 inser-
tion) transformed E. coli, did not have any PCR product,
using gp53 specific primer. The mRNA control (isolated
RNA without adding reverse transcriptase) showed that
the RNA was not contaminated with plasmid DNA
because no DNA fragment was amplified. This demon-
strated that transcription was initiated at approximately
30 base pairs downstream of the cryptic promoter.

Comparison of the cryptic promoter with the T7 promoter
using Real-time RT-PCR

The activity of both the cryptic promoter and T7 promoter
(sequence 5' TAATACGACTCACTATAGGGAG) were com-
pared using Real-time RT-PCR. This method uses mathe-
matical formulas to calculate relative expression levels
compared to a calibrator. The amount of target gene
expression is also normalized to an endogenous house-
keeping gene, in this case, 16S rRNA. The cryptic promoter
activity was significantly higher than that of the T7 pro-
moter (p < 0.01) (Figure 4).

Conclusion

Even though the cryptic promoter sequence did not per-
fectly match the conserved prokaryotic -35 and -10 ele-
ments, it matched 50% and 66%, respectively (Figure 1).
It has been reported that certain foreign elements can be
recognized as a promoter by E. coli[9]. Promoter homolo-
gous sequences are widely distributed in the genomic
sequence of E. coli[10]. Cryptic promoters are those
sequences that are promoter homologous sequences driv-
ing transcription. The cryptic sequences might also inter-
rupt expressions of foreign genes in plants. An example is
that the homologous intron sequence within a gene can
also interrupt expression of foreign gene[11]. In the cur-
rent study, a prokaryotic cryptic promoter drove transcrip-
tion during plasmid amplification. The sequence of the
cryptic promoter in PVX is different from that in PVY|[8].
The interruption was different because the toxic gene is
not from the virus itself as in PVY but from the foreign
gene. Cryptic promoters in eukaryotic cells can have dif-
ferent functions, such as increased enzyme expression; tis-
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-35 -10
sequence sequence
5580 TTGACA TATAAT
5' GGGCCATTGCOGATCTCAAGCCACTCTCCGTTGAACGGTTAAGTTTCCATTGAT
Primer 3 Primer 2

ACTCGAAAGAGGTCAGCACCAGCTAGCATCGATGGCACCTCCGGCAAAGAG

Primer 1 M R Ak

Figure |

Comparison of the PVX cryptic promoter with the con-
served prokaryotic promoter, The bold letters indicate the
conserved prokaryotic promoter sequence, -10 and -35
sequences. The cryptic promoter matches 4 of 6 bp in -10
element, and 3 of 6 bp in -36 element. The cryptic promoter
sequences are underlined. The bold letters near the start
codon (ATG) are the Cla | cloning site. The partial transgene
VP1 amino acid sequence MAPPAL is indicated.

sue-specific or
expression [12-14].

developmental stage-specific gene

A reporter gene, such as chloramphenicol acetyltrans-
ferase (CAT) when sub-cloned behind different promoters
could be used to compare the promoter activity|15]. The
enzyme expression driven by promoters can reflect the
promoters' activities. However, with Real-time RT-PCR,
the transcribed RNA could be used as an indicator to show
the promoter activity[16]. With real time RT-PCR, the
cryptic promoter activity was compared with that of T7
promoter, an inducible promoter.

Although the PVX vector is an expression vector in plants,
it needs to be amplified in E. coli for molecular manipula-
tion. During the DNA amplifying stage, the foreign genes
should not be expressed; however, the foreign genes in the
PVX vector were transcribed. If VP1 were not toxic to bac-
teria its transcription would not influence the cloning
work. The failure to sub-clone the VP1 cistron, suggested
that VP1 was toxic to bacteria (data not shown). The toxic
pressure prevented the non-mutated VP1 from being sub-
cloned into the PVX vector.

A number of plant viruses, such as tobacco mosaic virus
(TMV) and PVX, have been reported to contain mRNA
regions that possess a high degree of homology to both
chloroplast TRNA and prokaryotic 16S RNA, which are
closely related[17]. It has been demonstrated that a triple
block sequence located upstream from the coat protein
gene of PVX facilitated the translation of the pokeweed
antiviral protein gene in E. coli [17]. Even though unex-
pected expression of a foreign gene can interrupt down-
stream cloning work, the cryptic promoter makes the PVX
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Figure 2

The cryptic promoter in the PVX vector. The transcription
of the foreign gene gp53 was detected with Northern blots.
Lane I: 100 ng total RNA from the pgR106gp53 transformed
E. coli. Lane 2: 100 ng total RNA of the pgR106 transformed
E. coli (without foreign gene). The specific gp53 band was
detected. Lane 3: 300 ng RNA from the pgR106gp53 trans-
formed E. coli. Lane 4: 300 ng total RNA from the pgR106
transformed E. coli.

vector an expression vector in E. coli, able to express for-
eign genes in both E. coli and plants. This ability to express
foreign genes either in a prokaryotic organism (E. coli) or
a eukaryotic organism (plants) makes the PVX vector a
potential useful tool to study the differences in transcrip-
tion and translation between prokaryotic and eukaryotic
organisms without changing the vector.

Methods

Sub-cloning the foreign genes within the PVX vector

The PVX vector was developed into a useful plant expres-
sion vector[2]. PVX vector (pgR106) was used to express
the foreign genes. CPV-2 VP1 sub-cloning failed because
of a constant frameshift mutation near the start codon
(data not shown). The construction of the gp53 ORF
within the PVX vector was done to show the cryptic pro-
moter activity. The BVDV (Singer strain) gp53 was previ-
ously sequenced[6]. The BVDV Singer-gp53-pGEM
plasmid was used as a template for PCR to amplify the
gp53 ORF with specific primers (IDT, Coralville, Iowa).
The PVX vector contains a Clal cloning site behind the
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500 bp
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VP1cDNA gpS3mRNA

w/oRT

Figure 3

Determination of the initiation of transcription site. Three
primers behind the cryptic promoter were designed to run
the RT-PCR. Primer | was used in Lanes |, 4, and 7; Primer 2
in Lanes 2, 5, and 8; Primer 3 in Lanes 3, 6, and 9. M stands
for the molecular marker. The "+" stands for the positive
PCR control. The "-" marker stands for the negative PCR
control. Lane |, Lane 2, and Lane 3 contain the RT-PCR
product from pgR106gp53 transformed E. coli. Lane 4, Lane
5, and Lane 6 for the RT-PCR product with template RNA
from the gpR106VPI transformed E. coli. Lane 7, Lane 8, and
Lane 9 for the PCR product with total RNA from the
pgR106gp53 transformed E. coli. No PCR product was ampli-
fied, showing the RNA did not contain plasmid DNA.

coat promoter and a Sal I cloning site at the 3'end. The
sense primer was 5'-CCA TCG ATG GAC TTG CAT TGC
AAA CCT G-3' with a Clal restriction enzyme site (bold);
the antisense primer was 5'-GTC GAC TCA CCC TGA
GGC CIT CTG TTC-3' with a Sal I restricted enzyme site
(bold). The start codon is underlined. The Clal sequence
was incorporated in front of the start codon.

The PCR reaction conditions were as follows: 4 minutes
pre-heating at 95°C, a denaturation step at 95°C for 30

Figure 4

Comparison of the activity of the cryptic promoter and the
T7 promoter using Real-time RT-PCR. The average activity
of the cryptic promoter (value: 2.4) is higher than that of the
T7 promoter (value: 1). The 16S rRNA was the housekeep-
ing gene in this study.
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seconds, an annealing step at 55°C for 30 seconds, and a
synthesis step at 75°C for 45 seconds. Twenty five cycles
of PCR reactions were followed by a seven minute exten-
sion reaction at 72°C. The PCR product was then cleaved
by Clal and Sall (Promega, Madison, Wisconsin) in Buffer
D. After cleavage, the ORF was ligated with the pgR106
vector.

Northern blots

A probe for gp53 was made with BioNick DNA labeling
system[18]. A biotin label kit (Invitrogen, Carlsbad, Cali-
fornia) was used to label the probe for Northern blots
detected with chemiluminescent hybridization[19]. The
North2South Chemiluminescent hybridization and
Detection Kit (Pierce, Rockford, Illinois) was used. The
total RNA was isolated with the improved RNA isolation
method[20] using RNeasy Plant Mini kit (Qiagen, Valen-
cia, CA) from E. coli. The E. coli strain J]M109 (Promega),
was used for transformation with the pgR106gp53 plas-
mid. The total RNA was isolated from the transformed
JM109 and non-insertion plasmid pgR106 plasmid trans-
formed JM109 after culture for 4 hours in Luria-Bertani
(LB) medium at 37°C. An amount of 100 ng and 300 ng
total RNA from E. coli and RNA markers (Promega) were
run in a 1% agarose gel in MOPS running buffer at 45 mV
for 50 minutes. The gel was then stained with an RNA
staining buffer for 15 minutes. The gel was transferred
overnight with 20x SSC buffer. The RNA marker was
labeled on the nylon membrane after transferring. The
membrane was hybridized with a biotin-labeled probe for
gp53, following the kit protocol (Pierce).

RT-PCR

Total cellular RNA was extracted from pgR106gp53 trans-
formed E. coli with RNease Mini Kit (Qiagen) and fol-
lowed the protocol. The gp53 cDNA necessary for the PCR
assay was obtained using a cDNA CYCLE KIT (Invitrogen)
which is based on a simple and efficient synthesis
method[21]. First strand cDNA was synthesized according
to the manufacture's instructions by using the antisense
primer GCAAGATACCTG from gp53 sequence. Three for-
ward primers were designed from the triple block
sequence[22] to locate the transcription of the initiation
site, Primer 1 AGGTCAGCACCA, Primer 2 GTTTCCATT-
GAT, Primer 3 CTCAAGCCACTC (Figure 1) were designed
to determine the initiation of the transcription site of the
transgene. Primer 1 is the nearest to the transgene fol-
lowed by Primer 2, then by Primer 3. The primers were
synthesized at the UW-Biotechnology Center (Madison,
WI).

Real-time RT-PCR

As CPV-2 VP1 was toxic (data not shown) the cloning
work was interrupted by the toxicity and the cryptic pro-
moter. We chose a control expression method employing
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T7 promoter[23]. By comparing the expression of gp53
under two promoters, the cryptic promoter's activity was
compared with T7 promoter activity. A relative quantity of
Real-time RT-PCR results were calculated using the com-
parative threshold cycle (C;) method[24]. The inducer for
the T7 promoter was isopropyl pB-D-thiogalactoside
(IPTG)(GibcoBRL, Gaithersburg, MD). A volume of 1 ml
LB medium containing 0.5 pg/ml kanamycin and 1 mM
IPTG, was used to culture E. coli transformed with both
plasmids. The total RNA was isolated with the RNeasy
Plant Mini kit (Qiagen, Valencia, CA) for cDNA synthesis.
The forward primer GGAAGGATTACTCGCCTGAA from
the gp53 ORF was designed to amplify a 200 bp fragment
using Primer Express 3.0 software (Applied Biosystems,
Foster City, CA). The antisense primer CTCTCGTGCAC-
CTTGGGAGG, a 200 bp sequence downstream of the for-
ward primer, was designed to make cDNA[21] with cDNA
CYCLE KIT (Invitrogen). The housekeeping gene was 16S
rRNA, as described by Spano[25], using CATGCCGCGTG-
TATGAAGAA as a forward primer and TCACATCCGACTT-
GACAGAC as an antisense primer to produce a 200 bp
fragment. Briefly, 0.3 pg total RNA recovered from the
samples was added to a mixture consisting of magnesium
chloride, RNase inhibitor, 10x buffer, oligo-primers, and
reverse transcriptase following the kit protocol of the
c¢DNA CYCLE KIT (Invitrogen). The solution was heated at
70°C for 10 minutes, incubated at 45°C for 50 minutes,
and finally heated at 95°C for 5 minutes. The cDNA sam-
ples were then stored at -20°C for further use. For Real-
time RT-PCR experiments, SYBR Green DNA polymerase
master mix and 7300 Real-time PCR System (Applied Bio-
systems) were employed. Briefly 5 ul cDNA was added to
a 25 pl Real-time PCR mixture containing 12.5 pl of mas-
ter mix and 4 pM of each primer. The reaction mix was
cycled through the following temperature profile: incuba-
tion at 50°C for 2 min and 95°C for 10 min, 40 cycles at
95°C for 20 seconds, one cycle at 60°C for 30 seconds
and one cycle at 60°C for 40 seconds. To semi-quantify
the promoter activities, an arbitrary threshold was set at
cycles 6-15. The ratios of the Ct-values of the cryptic pro-
moter and the T7 promoter to the housekeeping gene
were determined. Three replications of each promoter
activity were done. T-test was employed to determine
whether the two promoters' activities were significant dif-
ferent.
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