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Abstract
Background: Cone degeneration is the hallmark of the inherited retinal disease retinitis
pigmentosa. We have previously identified a trophic factor "Rod-derived Cone Viability Factor
(RdCVF) that is secreted by rods and promote cone viability in a mouse model of the disease.

Results: Here we report the bioinformatic identification and the experimental analysis of RdCVF2,
a second trophic factor belonging to the Rod-derived Cone Viability Factor family. The mouse
RdCVF gene is known to be bifunctional, encoding both a long thioredoxin-like isoform (RdCVF-
L) and a short isoform with trophic cone photoreceptor viability activity (RdCVF-S). RdCVF2
shares many similarities with RdCVF in terms of gene structure, expression in a rod-dependent
manner and protein 3D structure. Furthermore, like RdCVF, the RdCVF2 short isoform exhibits
cone rescue activity that is independent of its putative thiol-oxydoreductase activity.

Conclusion: Taken together, these findings define a new family of bifunctional genes which are:
expressed in vertebrate retina, encode trophic cone viability factors, and have major therapeutic
potential for human retinal neurodegenerative diseases such as retinitis pigmentosa.

Background
Retinitis pigmentosa (RP) is a genetically heterogeneous ret-
inal degeneration characterized by the sequential degener-

ation of rod and cone photoreceptors. The first clinical
signs are night blindness and narrowing of the peripheral
field of vision which progressively worsens to become
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"tunnel-like". Eventually, the central vision is reduced to
complete blindness in most cases. At a cellular level, the
retinal rod photoreceptors involved in night and side
visions slowly degenerate. Subsequently, the cone pho-
toreceptors responsible for both color and high-contrast
vision, visual acuity, detail perception and normal light
vision are similarly affected. To date, no treatment is avail-
able.

This apoptotic degeneration is genetically associated with
many mutated loci that encode proteins predominant
expressed in retinal rod photoreceptor neurons. The cone
loss proposed a paradox since, in a significant proportion
of RP patients, the mutated gene is not expressed in these
cells. As cones are responsible for the most crucial visual
functions, the mechanisms that trigger their degeneration
are major therapeutic targets. The retinal degeneration 1
(rd1) mouse is the most studied animal model for the
human disease. It carries a recessive mutation in the rod-
specific cGMP phosphodiesterase beta subunit gene lead-
ing to rod photoreceptor death through apoptosis [1,2]
followed by cone death presumably through lack of
trophic support [3]. We used expression cloning to iden-
tify a trophic factor secreted by rods that promotes cone
viability in the rd1 mouse; RdCVF, for Rod-derived Cone
Viability Factor [4]. In the model proposed, rod degener-
ation results in a decrease of RdCVF expression, which
subsequently leads to cone degeneration due to a lack of
trophic support [5].

The RdCVF gene, also called thioredoxin-like 6 (Txnl6),
encodes the Q8VC33 UniProt [6] protein, which has lim-
ited similarity to the thioredoxin superfamily [4]. Thiore-
doxins (TXN) are usually small proteins which can be
involved with pleiotropic activities such as redox control,
regulation of apoptosis and cytokine activity [7-9]. The
TXN conserved active site contains two distinct cysteines
(CXXC) that contribute to a thiol-oxydoreductase activity
[9,10] catalyzes the reduction of disulfide bonds in multi-
ple substrate proteins [11,12]. The RdCVF gene encodes
two products via alternative splicing: a full length protein
and a C-terminal post-transcriptionally truncated protein
sharing similarities with TRX80. This latter form of
human thioredoxin-1 (Txn) [13-15] has no thiol-reduct-
ase activity but is involved in controlling growth of
peripheral mononuclear blood cells [13,16]. Similar to
Txn, RdCVF looks like a bifunctional gene because it
encodes both a long form (RdCVF-L, 217 aa, Q8VC33)
having a putative thiol-oxydoreductase activity [17,18]
and a short form (RdCVF-S, 109 aa, Q91W38) with
trophic activity for cones but no redox activity.

In this paper we report genomic investigations that
revealed RdCVF2 as a gene paralogous to RdCVF. Like
RdCVF, RdCVF2 is spliced into two alternative mRNAs

translated into a long (156 aa, Q9D531) and a short (101
aa, Q91WB0) thioredoxin-like proteins called RdCVF2-L
and RdCVF2-S respectively. We explored orthology in
available vertebrate genomes and analyzed homology
with the thioredoxin superfamily. We also investigated
the cone trophic factor activity of RdCVF2 and find it to be
similar to that of RdCVF.

Results
Identification of RdCVF2, a gene paralogous to RdCVF
The mouse RdCVF gene is located on chromosome 8 and
contains three exons (Figure 1, panel a). The RdCVF-S
splice variant is composed of a single exon in which the
coding sequence is the same as the first exon of the long
form extended by one codon followed by a stop codon
(TGA) and finally a 3' untranslated region (UTR). Conse-
quently, the last 109 amino acids, called the "cap" (see
below) of RdCVF-L are missing in RdCVF-S. We identified
a paralogous gene on chromosome 13 that we call
RdCVF2 (panel b). Both sequence and gene structure are
highly similar between the two. Indeed RdCVF2 also
encodes both a thioredoxin-like protein (156 aa,
Q9D531) and a shorter form (101 aa, Q91WB0) called
RdCVF2-L and RdCVF2-S respectively. The degree of
homology between RdCVF and RdCVF2 is 58.0% for the
long isoforms and 53.5% for the short isoforms.

Conservation of RdCVF and RdCVF2 gene structure during 
evolution
Cone viability is related to the production of the RdCVF-S
form and, by extension, to the presence of the stop codon
at the end of the first exon required to obtain that isoform.
To evaluate conservation of that stop codon further, we
mapped the RdCVF and RdCVF2 genes on vertebrate
genomes available on the UCSC genome browser web site
[19] [see Additional file 1). Both loci were found in 13
vertebrates. All these organisms exhibited both genes
except Takifugu rubripes and Tetraodon nigroviridis, in
which RdCVF was duplicated at the same chromosomal
location (RdCVF a and b) with an additional intron
inserted into the first coding exon of this loci. It is note-
worthy that the stop codon at the end of the first exon is
strictly conserved in the vast majority (Figure 1, panel a
and b). This observation implies the possible existence of
RdCVFs short isoforms in most vertebrates, excepting Gal-
lus gallus and Brachydanio rerio RdCVF; Tetraodon nigro-
viridis and Takifugu rubripes RdCVFb.

Analysis of RdCVF and RdCVF2 protein sequences
Proteins orthologous to RdCVF(-L/2-L) referring to the
long isoforms of both RdCVF genes, were identified or
predicted in vertebrates (Rattus norvegicus, Homo sapiens,
Pan troglodytes, Bos taurus, Canis familiaris, Gallus gallus,
Xenopus laevis, Tetraodon nigroviridis, Brachydanio rerio)
according to protein or genome database searches. We
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aligned protein sequences of RdCVF, RdCVF2, trypare-
doxin (TRYX), nucleoredoxin (NXN) and thioredoxin
(TXN) (Figure 2, panel a). As exemplified by a phyloge-
netic analysis [see Additional file 2] among the TXN
superfamily, RdCVF and RdCVF2 proteins are closely
related to the TRYX and NXN members [20-25]. Even dis-
tant homologs such as Crithidia fasciculata tryparedoxin I
(O96438, TRYX-I) [22] exhibit 42.5% and 45.4%
sequence similarity to mouse RdCVF(-L/2-L) proteins.
Three insertions in the multiple alignment (called 1,2 and
3) allow one to distinguish these phylogenetic protein
families (Figure 2, panel a). Insertion 3 (residues 87–110)

contains the conserved motif WLALP [W108(L, V)(A, F)(L,
V, I)P112] and clearly discriminates the TRYX family
[TRYX, NXN, RdCVF and RdCVF2] from TXN superfamily.
Insertion 2 (63–72) and two additional residues (96–97)
of insertion 3 allow one to differentiate the RdCVF and
RdCVF2 proteins from the rest of the TRYX family. Finally,
insertion 1 (16–21) unambiguously separates RdCVF
from all the other TXN superfamily members including
RdCVF2. Note that the thioredoxin active site C44XXC47 is
only conserved in 44.4% (4/9) and 72.7% (8/11) of the
RdCVF and RdCVF2 vertebrate proteins respectively.

RdCVF and RdCVF2 gene structure conservationFigure 1
RdCVF and RdCVF2 gene structure conservation. At top, panels a and b are the gene structures for RdCVF and 
RdCVF2 genes. The RdCVF-L mRNA (NM_145598, mouse chromosome 8, minus strand, from 70'033'763 to 70'027'717) is 
composed of three exons (1–3) of 348, 687 and 1751 bp. The RdCVF-S mRNA (BC017153, from 70'033'785 to 70'032'615) is 
composed of one exon (1172 bp). The RdCVF2-L mRNA (AK015847, mouse chromosome 13, plus strand, from 50'202'630 to 
50'206'797) is composed of two exons (1–2) of 603 and 564 bp. The RdCVF2-S mRNA (BC016199, from 50'202'667 to 
50'205'571) is composed of one exon (2904 bp). Coding and non-coding regions are depicted in dark grey) and light grey 
respectively. At middle, panels a and b, the genomic region surrounding the stop codon at the end of the first coding exon and 
the corresponding orthologous sequences in 12 other vertebrate genomes are aligned. The black triangles indicate the end of 
the first RdCVF(2)-L coding exon. Conserved stop codons are colored in red. At bottom, panels a and b, lengths of the coding 
(CDS) and terminal untranslated regions (UTR) are given.
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Sequence and structure similarities of mouse RdCVF and RdCVF2 proteins with thioredoxin superfamily membersFigure 2
Sequence and structure similarities of mouse RdCVF and RdCVF2 proteins with thioredoxin superfamily 
members. Panel a shows the multiple sequence alignment of the thioredoxin (TXN) tryparedoxin (TRYX-I) nucleoredoxin 
(NXN) and the existing and predicted RdCVF and RdCVF2 proteins. The name, organism and accession number (in brackets) 
of each protein sequence are given (left). Identical (white text on black) small (A, D, G, P, S, T ; white text on green) hydropho-
bic (A, C, F, G, I, L, M, S, T, V, W, Y ; black text on yellow) polar (D, E, H, K, N, Q, R, S ; blue text) and charged (D, E, K, R ; 
white text on red) conserved residues are shown according to a conservation threshold of 85%. A consensus sequence is given 
below the multiple alignment in which s, h, p and c correspond to small, hydrophobic, polar and charged residues respectively. 
The secondary structures (β sheet and α helix) of the Crithidia fasciculata tryparedoxin I structure (1EWX) are given below 
the consensus sequence. The blue dashed rectangles indicate the three RdCVF(2) specific insertions. The green dashed rectan-
gle shows the "cap" region absent in RdCVF(2)-S. The position of the human thioredoxin cleavage product (TRX80) is indi-
cated (red triangle). Panel b displays the structure of the Crithidia fasciculata TRYX-I (1EWX) (left) mouse RdCVF-L (center) 
and mouse RdCVF2-L (right) models. Regions of TRYX-I backbone conserved in RdCVF(2)-L are colored in red. The "cap" 
region and the three specific insertions are depicted in green and blue respectively. The putative catalytic site (C44XXC47) is 
shown in yellow with a space-filling representation.
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Structural modeling of RdCVF and RdCVF2
The high sequence similarity of RdCVFs with TRYX pro-
teins prompted us to build the RdCVF(-L/2-L/-S/2-S)
structural models with Crithidia fasciculata TRYX-I crystal
structure (PDB accession number: 1EWX, 1.7 Å resolution
structure) [22] as a template. By analogy with human TXN
and TRX80 models [13] the RdCVF(-S/2-S) structure mod-
els were assumed to maintain the same overall folding.
The TRYX-I (1EWX) and RdCVF(-L/2-L) structures are
shown in Figure 2 panel b.

Figure 2 displays the 1EWX secondary structures (β-sheet
and α-helix) below the multiple alignment (panel a) and
in the TRYX-I 3D-structure (panel b). The insertions 1, 2
and 3 correspond respectively to: an increase in size of the
β1.1-β1.2 sheets, a one turn extension in the α2 helix, and a
larger structural region containing the TRYX-specific αsup-
βsup and α3 extension. The two residues (96–97) belong-
ing to insertion 3 in the RdCVF proteins correspond to a
larger constrained loop before strand βsup and allow one
to discriminate these proteins from TRYX members. It is
worth noting that the location on the folded protein
where the three insertions co-localize are on the opposite
side from the putative catalytic site (C44XXC47) in RdCVFs
(Figure 2, panel b). Finally, the C-terminal region absent
in RdCVF(-S/2-S) proteins (hereafter called "cap" and
depicted in green in Figure 2, panel b) is positionally fixed
relative to the catalytic site. The "cap" region in TXN pro-
teins interacts with the recycling enzyme thioredoxin
reductase [7,13] and its absence might impair the thiore-
doxin activity in TRX80 and RdCVF(-S/2-S) [4,13]. A strik-
ing feature of these structural models is the clear spatial
proximity of residues from the three insertions (Figure 3
panel a). This coincidence points to a possibly novel inter-
action site in RdCVF(-L/2-L). As expected, the backbone
conformation of the refined model of RdCVF(-S/2-S)
(shown in Figure 3, panel b) is the same as its counterpart
in the long forms, with minor modifications observed in
the side-chains at the interface between the non-"cap" and
"cap" regions. It should be emphasized that the absence of
the "cap" yields to the emergence of a major hydrophobic
patch at the RdCVF(-S/2-S) surface (Figure 3, panel b). As
a consequence the hydrophobic part of the accessible sur-
face area of RdCVF proteins increases from 2394 Å 2 in the
long form to 3157 Å 2 in the short form.

RdCVF-S and RdCVF2-S are expressed in the retina in a 
rod-dependent manner
We have measured the expression of RdCVF2(-S/-L) by
RT-PCR. With primers amplifying the short (176 bp) and
long (170 bp) isoforms, we found that RdCVF2-S and -L
are expressed in the wild-type mouse retina (Figure 4,
panel a). Interestingly, RdCVF2-S and -L expression was
absent in the retina of the rd1 mouse after rod-photore-
ceptor degeneration. We have also studied the expression

of RdCVF2 using northern blotting (Figure 4, panel b). In
addition to the expression in the retina, most likely by rod
photoreceptors since its expression is absent in the degen-
erated retina (rd1), we found weaker expression of
RdCVF2 in the brain and testis. No expression was
detected in the whole mouse embryo at embryonic day
12.5. To determine the expression of genes encoding
RdCVF2-S and L across the retina we used in situ hybridi-
zation. Transcripts for RdCVF2-S and L were detected in
the photoreceptor layer. No staining was observed with
the sense control probes, supporting the specificity of the
RdCVF2-S and L probes (Figure 4, panel c). No expression
was detected in the rd1 retina after rod degeneration
(result not shown).

We next analyzed the expression of RdCVF2-S during the
process of rod degeneration (Figure 4, panel d). At post-
natal day 8 (PN8) before the onset of rod loss, RdCVF2-S
is expressed at similar level in the wild-type and in the rd1
retina similarly to the rod photopigment gene rhodopsin.
From PN15 to PN35 the degeneration of rods (measured
by the decrease in rhodopsin expression) is correlated
with a decrease in RdCVF2-S expression. These results
indicate that RdCVF2-S is expressed in a rod-dependent
manner [see Additional file 3].

RdCVF2 mRNA is not only expressed in the retina but also 
in other tissues
We searched in the EMBL public database for mouse EST
and mRNA sequences corresponding to the RdCVF(-L/-S/
2-L/2-S) mRNAs to estimate the tissue distribution of each
isoform [see Additional file 4]. As reported before [4]
RdCVF-L and RdCVF-S mRNAs are specifically expressed
in eye and retina as 20/23 and 4/4 sequences were found
in these tissues respectively. The mouse RdCVF2-L mRNA
is preferentially expressed in retina (10/24) but is also
present in other tissue types such as tumor (2) testis (2)
stem cells (2) amnion (1) placenta (1) oviduct (1) fetus
(1) thymus (1) and mammary gland (1). Finally, EST and
mRNA sequences corresponding to RdCVF2-S are exclu-
sively expressed in retina (3/4). We were able to detect the
expression of RdCVF2 in the testis and brain (Figure 4,
panel b).

RdCVF2-S cone viability effects
The strong similarities between RdCVF and RdCVF2 loci
in terms of gene organization, conservation of sequence
and rod-dependent expression led us to hypothesize that
RdCVF2-S protein might also be able to promote cone via-
bility as previously reported for RdCVF-S [4]. Indeed, the
figure 5 panel a and b shows that the number of live cells
in the presence of RdCVF-S is twice as the control
(pcDNA3). A less pronounced, but statistically significant,
increase in cone viability (1.6 fold) is observed for
RdCVF2-S. These findings confirm that RdCVF2-S is also a
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Spatial proximity of the three specific insertions and specifically-accessible hydrophobic surface in the RdCVF-S and RdCVF2-S proteinsFigure 3
Spatial proximity of the three specific insertions and specifically-accessible hydrophobic surface in the RdCVF-
S and RdCVF2-S proteins. Panel a displays the space-filling representation of RdCVF-L (left) and RdCVF2-L (right) using the 
same color code as Figure 2 panel b. Importantly, the RdCVF(2)-L models were rotated as indicated to focus on the three spe-
cific insertions. Note that catalytic site and "cap" region are on opposite ends of the protein. Panel b shows the RdCVF-S and 
RdCVF2-S models. Hydrophobic, small, polar and charged residues are colored in yellow, green, blue and red respectively. The 
models were rotated to focus on the large hydrophobic surface specifically-accessible in the short isoforms.
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Validation of the RdCVF2 expression in retinaFigure 4
Validation of the RdCVF2 expression in retina. Panel a shows the expression of the short and long forms of RdCVF2 
mRNA in the wild-type and rd1 retina at post-natal day 35. The RT-PCR product lengths are (RdCVF2-S: 176 bp, RdCVF2-L: 
170 bp. Panel b: northern blotting analysis of RdCVF2 'exon 1) and G6PDH control. Panel c: In situ hybridization on sections of 
wild-type and rd1 mice retina with digoxigenin-labeled RdCVF2-S and L riboprobes (AS : antisens, S : sens). Panel d shows 
expression time-courses for both isoforms of RdCVF2 and rhodopsin in wild-type and rd1 mice during the first postnatal 
month. GC, Ganglion cells; INL, inner nuclear layer; ONL, outer nuclear layer. Original magnification : 40 ×.
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cone viability factor similar to RdCVF-S [4]. Importantly,
no synergistic trophic effect on cones is observed when
both RdCVF-S and RdCVF2-S are co-tranfected in COS-1
cells pointing to use of the same pathway by both factors
(data not shown).

Discussion
Identification of RdCVF2
In this paper, we report the identification of a gene paral-
ogous to RdCVF called RdCVF2. The analysis of gene
structure conservation and the EST database searches with
experimental validation by RT-PCR and in situ hybridiza-
tion indicate two alternative transcripts from both genes,
expressed in a rod-dependent manner and translated into
the RdCVF(-S/2-S) and RdCVF(-L/2-L) short and long pro-
tein isoforms. A phylogenetic analysis suggests that both
genes are strongly conserved in most vertebrates. Experi-
mental validations demonstrate a cone viability activity of
RdCVF2-S that is similar to the one of RdCVF. Taken
together, these genes define a novel bifunctional gene
family expressed in vertebrate retinas with trophic activity
and significant potential as therapeutic targets in human
retinal diseases.

Bifunctional activity of the RdCVF family members
Like thioredoxin, the RdCVF family is bifunctional and
pleiotropic in vertebrates. The short isoform exerts a
trophic activity while the long isoform's function is
unknown, but presumably involves a redox activity.
RdCVF and RdCVF2 proteins share high sequence and
structure homologies with tryparedoxin, a member of the
thioredoxin family that might be of functional signifi-
cance. The non-conservation of the C44XXC47 catalytic site
implies that the thiol-oxydoreductase activity of the long
isoforms in RdCVFs may have become dispensable. Nev-
ertheless, it is noteworthy that the cysteins of the catalytic
domain are never lost in both RdCVF-L and RdCVF2-L
proteins in the same organism.

As it has been previously published [4], our current results
contribute to explain the lack of thiol-oxydoreductase
activity in the short isoforms of the RdCVFs. Since the
"cap" region directly interacts with the thioredoxin reduct-
ase which recycles the enzyme activity [7,13], its absence
in RdCVF-S and RdCVF2-S proteins prevent them from
such a redox function.

RdCVF-S and RdCVF2-S cone viability and signaling 
mechanisms
Analysis of the RdCVF-S and RdCVF2-S structural models
provided evidence for two features. First, since the short
isoforms of the RdCVFs lack the C-terminal "cap" region
of the long isoforms, and have no thiol-oxydoreductase
activity, they expose a large accessible hydrophobic patch
(Figure 3, panel b). This patch may be where these pro-

teins interact with other proteins or cell membrane struc-
tures.

Second, the three RdCVF-specific insertions (Figure 2,
panel b) all co-localize at the opposite pole from the cat-
alytic site. This novel surface feature may also constitute
an interaction site with a cell-surface receptor expressed by
cone photoreceptors. Mutation analyses will prove useful
in exploring the roles of these two features. Since thiore-
doxin are secreted by a pathway that does not require
leader sequence [26], it is also theoretically possible that a
putative receptor is present within the cytoplasm of cones
and that RdCVF-S and RdCVF2-S are diffused through the
interphotoreceptor matrix penetrating photoreceptor
cells.

RdCVF-S was demonstrated to be involved with cone via-
bility by a 60% reduction in the rescue activity of condi-
tioned media upon rod-enriched retinal explants after
immunodepletion with anti-RdCVF-S antibodies [4]. The
similarity between the two factors suggests that they
belong to similar signaling pathways. Therefore, RdCVF2-
S might be responsible for the remaining 40% cone viabil-
ity activity. Similar experiments using antibodies for both
genes would help to determine whether the trophic activ-
ity can be full accounted for by these two proteins. Co-
immunoprecipitation would also be interesting since the
short isoforms bear potential interaction domains which
imply binding partners. Indeed, by analogy with TRX80
that dimerizes in solution [13] the very large hydrophobic
surface created by the "cap" removal of RdCVF-L and
RdCVF2-L (Figure 3, panel b) may promote homodimeri-
zation or heterodimerization among RdCVF-S and
RdCVF2-S.

Photoreceptors constitute the cells with the highest rate of
oxidative metabolism in the body. As the outer retina (the
photoreceptor layer) is avascular, the oxygen is provided
by the high blood flow from the underlying choroid.
Since this blood flow is not regulated by oxygen consump-
tion, primary rod (97% of all photoreceptors in the
mouse retina) degeneration leads to a huge increase in
oxygen [27,28]. As thioredoxin enzymes participate in
redox homeostasis [29], the RdCVF gene may have origi-
nally served an extra thiol-oxydoreductase activity to pre-
vent damage linked to hyperoxia of photoreceptors
resulting from light. One could suppose that the RdCVF
family bifunctionality might form a regulatory loop in
which the long form senses oxygen levels and transfer this
signal to the short form that would exert a trophic effect
on neighboring cells and would maintain a correct cell-
oxygen ratio.
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Conclusion
By data mining using RdCVF sequence, we have identified
a novel trophic factor for cone survival. This second factor
defines a novel family of bifunctional proteins with
potential involvement in neuroprotection and response
to oxidative stress. The homology of both factors with the
thioredoxin family suggests that the RdCVF family derives
from an ancestor thioredoxin gene that has been recruited
during evolution to serve the protection of cone photore-
ceptors.

Methods
Database searches
The UCSC genome browser BLAT [19,30] server was used
to map the mouse RdCVF and RdCVF2 genes to all the
available vertebrate genomes and to extract the corre-
sponding genomic sequences. In order to identify candi-
date RdCVF and RdCVF2 orthologous proteins, homology
searches in the UniProt [6] and EMBL [31] public
sequence databases were performed using the BLAST pro-
grams [32,33]. Mouse mRNA and EST sequences associ-
ated with both RdCVF and RdCVF2 isoforms (L and S)
were used to estimate the tissue specificity of each messen-
ger.

Multiple alignments of DNA and protein sequences
TBA [34] and PipeAlign [35] programs were used with
default parameters to generate the multiple alignments of
genomic and protein sequences respectively. Protein
alignment occasionally included manual adjustments in
keeping with the protein secondary structure conserva-
tion.

Phylogenetic tree of the RdCVF family
The PhyloWin program [36] was used to generate the phy-
logenetic tree based on the multiple alignment of protein
sequences using the neighbour joining reconstruction
algorithm with pairwise gap removal and 500 bootstrap
replicates. Only the first 155 and 147 residues of RdCVF-
L and RdCVF2-L proteins respectively were used.

Structural modeling of the short and long RdCVF and 
RdCVF2 variants
Structural models for mouse RdCVF and RdCVF2 (both S
and L forms) using the 155 and 147 first residues respec-
tively were constructed using the Builder homology mod-
eling package [37-39]. The final models were further
refined by energy minimization, using ENCAD [40]. On
each model 1000 steps of conjugate gradient minimiza-
tion was applied. The E146(1EWX) → P146(RdCVF-L)
mutation obliges the local backbone conformation in the
template structure to be adapted to fit the proline (Figure
2, panel a and b). Builder samples simultaneously the
conformation of the loops in the five insertions/deletions
and in the E → P mutation region, and the conformation
of the side-chains, using a self consistent mean field
approach. PyMOL [41] was used to render the final struc-
tures.

Real-time RT-PCR and Northern blotting
Total RNA from neural retina of 8, 15 and 35-day-old wild
type (C57BL/6@N), rd1 mutant (C3H/He@N) mice was
purified by cesium gradient [42]. Double-stranded cDNA
was synthesized from 5 µg total RNA using Superscript
Choice System (Invitrogen, Carlsbad, CA). cDNAs were
produced by random priming and normalized according
to glucose-6-phosphate dehydrogenase mRNA. First
strand cDNA (0.2 µl) was amplified in triplicate using 2
µM of the specific primers. Primers 5'- CATCAC-
CAACAAAGGGCGGAAG -3' and 5'- CATTCCTCAGCA-
GAGAAGGGAAC -3' were used for RdCVF2-S; primers 5'-
CCGTGCTATTGTTTCAGAGCCCTTAACTTTCTATC -3'
and 5'- CTGACACTCCAATCGTAAAAGGCAGAAAACGC -
3' were used for RdCVF2-L. Primers 5'-AAGCCGATGAG-
CAACTTCC-3'; 5'-TCATCTCCCAGTGGATTCTT-3' were
used for rhodopsin ; 5'-GCAGTCACCAAGAACATTCAAG
-3' 5'-CCCAAATTCATCAAAATAGCCC-3' were used for
G6PDH on a lightcycler (Roche, Basel, Switzerland).

Cone viability assay of RdCVF-S and RdCVF2-SFigure 5
Cone viability assay of RdCVF-S and RdCVF2-S. Panel 
a displays cells from cone-enriched cultures labeled with the 
viability dye calcein-AM and incubated with conditioned 
media from COS-1 cells transfected with: empty vector 
pcDNA3, pcDNA-RdCVF-S or pcDNA-RdCVF2-S. Panel b 
shows the rescue activity of RdCVF-S and RdCVF2-S when 
compared to that of empty vector. Statistical analysis 
(Tuckey test) shows that the results are statistically signifi-
cant (p < 0.001).
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The absence of DNA contamination was checked by omit-
ting the reverse transcriptase. Results are displayed as fold
difference compared to the lowest expression.

For northern blotting analysis, 2 µg of poly-A mRNA was
used and the membrane was hybridized to a probe corre-
sponding to exon 1 of the RdCVF2 gene using standard
method.

In situ hybridization
The expression of RdCVF2-S and -L mRNA in the retina
was analyzed by in situ hybridization with a digoxigenin-
labeled murine antisense riboprobe.

After defrosting and drying at room temperature, sections
were post-fixed on ice for 10 min in 4% paraformalde-
hyde washed in PBS at room temperature for 10 min.

Mouse RdCVF2-S and RdCVF2-L was amplified by PCR
using the following primers: primers 5'-GTAGCTTTG-
TACTTTGCGGCG-3' and 5'-GTCATCAGAAAATGTAT-
CACCTCCATAGG-3' for RdCVF2-S; primers 5'-
GCCATCTCTGCGACTTATTTTTACC-3' and 5'-AATTAGT-
GCCACCAGCACCATC-3' for RdCVF2-L.

The PCR product was cloned into PGEM easy vector
(Promega, France).

Sections were hybridized with sense and antisense
RdCVF2 mRNA probes generated from SP6 or T7 promot-
ers and labeled with digoxigenin-UTP (Boehringer, Man-
nheim, Germany). In situ hybridization and digoxigenin-
labeled probe detection were performed as described pre-
viously [43]. The specificity of the staining was demon-
strated by the lack of hybridization signal with the sense
probe.

Cone viability assay
RdCVF(-S/2-S) isoforms were cloned into the expression
plasmid pcDNA3 and transfected into COS-1 cells. 48
hours after transfection, the conditioned media from the
COS-transfected cells was harvested and incubated with a
cone-enriched primary cell culture system from chicken
embryo (60–80% of cones) [44]. After seven days of incu-
bation, a period over which these post-mitotic cells degen-
erate, the viability of the cells in the culture was scored
using the Live/Dead assay (Molecular probes, Eugene,
OR) and a cell counting platform as previously described
[4]. The viability corresponding to three independent
assays is represented as fold over pcDNA3 used as negative
control.
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