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Abstract

Background: Cardiac arrest, and the associated arrest of blood circulation, immediately leads to
permanent brain damage because of the exhaustion of oxygen, glucose and energy resources in the brain.
Most hippocampal CAl neurons die during the first week post the insult. Molecular data concerning the
recovery after resuscitation are sparse and limited to the early time period. Expression analysis of marker
genes via quantitative real-time RT-PCR enables to follow up the remodeling process. However, proper
validation of the applied normalization strategy is a crucial prerequisite for reliable conclusions.

Therefore, the present study aimed to determine the expression stability of ten commonly used reference
genes (Actb, actin, beta; B2m, beta-2 microglobulin;CypA, cyclophilin A; Gapdh, glyceraldehyde-3-phosphate
dehydrogenase; Hprt, hypoxanthine guanine phosphoribosyl transferase; Pgk/, phosphoglycerate kinase I;
Rpll3a, ribosomal protein L13A; Sdha, succinat dehydrogenase complex, subunit a, flavoprotein (Fp); Tbp,
TATA box binding protein; Ywhaz, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation
protein, zeta polypeptide) in the rat hippocampus four, seven and twenty-one days after cardiac arrest.
Moreover, experimental groups treated with the anti-inflammatory and anti-apoptotic drug minocycline
have been included in the study as well.

Results: The microglial marker Mac-1, used as a target gene to validate the experimental model, was
found to be upregulated about |0- to 20-fold after cardiac arrest.

Expression stability of candidate reference genes was analyzed using geNorm and NormFinder software
tools. Several of these genes behave rather stable. CypA and Pgk! were identified by geNorm as the two
most stable genes 4 and 21 days after asphyxial cardiac arrest, CypA and Gapdh at 7 days post treatment.
B2m turned out to be the most variable candidate reference gene, being about 2-fold upregulated in the
cardiac arrest treatment groups.

Conclusion: We have validated endogenous control genes for qRT-PCR analysis of gene expression in
rat hippocampus after resuscitation from cardiac arrest. For normalization purposes in gene profiling
studies a combination of CypA and Pgk | should be considered 4 and 21 days post injury, whereas CypA and
Gapdh is the best combination at 7 days. CypA is most favorable if restriction to a single reference gene for
all time points is required.
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Background

Patho-physiological and biochemical processes during a
cardiac arrest, resuscitation, and after restoration of spon-
taneous circulation are extremely complex, and thus far,
poorly understood. Under normothermic conditions
brain damage begins to develop after 4-5 min of no-flow
[1,2] due to total circulatory arrest, mainly because of the
exhaustion of oxygen, glucose and energy resources in
brain and other parts of the organism. Eight minutes of
asphyxiation - resulting in approximately five minutes of
complete none perfusion - causes major to subtotal neu-
ronal damage within the CA1 region of hippocampus, as
revealed by haematoxylin-eosin staining [3]. Already eight
hours after the insult damaged neurons are characterized
by shrunken cell bodies and pyknotic nuclei. Necrotic
neurons are partially resorbed within the first week after
the insult.

This histologically visible massive remodeling process can
be expected to be accompanied with considerable changes
in mRNA and protein expression. Only few data are avail-
able and these are limited to the early period after the
insult. For example the level of the stress related proteins
HSP70 and HSP40 is increased 12 h after the ischemic
insult [4], as well as the mRNA amount of HSP10, a heat
shock protein of the mitochondrial matrix [5]. Caspase-1
and -3 are detectable immunohistochemically 72 h after
asphyxia [6]. Moreover, the mRNAs of MMP-9, a matrix
metalloproteinase, and TIMP-1, tissue inhibitor 1 of
matrix metalloproteinase, are upregulated 6 h after the
insult [7]. At 24 h after cardiac arrest BDNF transcripts,
namely those containing exons 1 and 3, as well as BDNF
protein are increased [8,9].

When attempting to analyze the molecular biological con-
sequences of an ischemic insult due to asphyxial cardiac
arrest (ACA), a model of neurological injury after sudden
cardiac arrest, real-time quantitative RT-PCR (qRT-PCR) is
the method of choice for monitoring alterations of gene
expression patterns that accompany the recovery process
in the damaged brain. qRT-PCR enables a sensitive and
accurate quantification of mRNA expression levels.

However, selection of an appropriate normalization strat-
egy is of crucial importance for data interpretation,
because data need to be controlled for the experimental
error introduced during the multistage process of isolating
and processing RNA [10-12].

The most frequently applied approach for normalization
is the use of an internal control or reference gene, often
referred to as housekeeping gene. A growing number of
recently published articles reflect the need to carefully val-
idate reference genes for each particular experimental
model [13-16]. To be used as a suitable reference gene sev-
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eral criteria should be fulfilled. The expression should be
stable, not regulated or influenced by the experimental
conditions or treatments. In addition, the expression level
of the reference gene should be similar to the target genes
in the analyzed samples. The amplification of the refer-
ence gene should be RNA-specific. The importance of
choosing a reliable reference gene is underlined by the
fact, that the use of an unstable reference gene for normal-
ization will obscure real changes or produce artificial
changes in gene expression [13,17]. Therefore, the valida-
tion of reference genes for each experimental situation is
a crucial requirement for the acquisition of biological
meaningful data [10,18,19].

The aim of this study was to identify the most stable refer-
ence gene, or a combination of the most stable genes, in
rat hippocampus during the long term recovery after glo-
bal hypoxic ischemia. We therefore evaluated ten com-
monly used housekeeping genes for their change in the
ACA experimental model at 4, 7 and 21 days after the
insult. The analysis was conducted in parallel also with
experimental groups that received treatment with minoc-
ycline. Minocycline is a semisynthetic second-generation
tetracycline with broad-spectrum antimicrobial activity,
which has been used for decades in humans to treat infec-
tious diseases [20]. In addition to its antimicrobial actions
minocycline was shown to exert beneficial effects in a vari-
ety of models of neurological disorders (reviewed in [21-
24]). This application area relies on minocycline's anti-
inflammatory and anti-apoptotic properties. For example
minocycline has been demonstrated to reduce infarct size
after focal cerebral ischemia [25-28], to inhibit ischemia
induced activation of microglia and to prevent upregula-
tion of ischemia-induced mRNAs [25,29]. Therefore, the
analysis of minocycline's effectiveness is desirable in the
ACA experimental model too. However, since such a phar-
macological treatment might up- or downregulate not
only target genes, but also housekeeping genes, the respec-
tive experimental groups were already included in this
study.

Our results will provide information about appropriate
reference genes for the normalization of qPCR data during
long time recovery studies in the cardiac arrest model nec-
essary for future gene expression studies.

Results

Ten candidate reference genes were selected from com-
monly used control genes. Genes with different functions
were chosen to avoid genes belonging to the same biolog-
ical pathways that might be coregulated (see Tab. 1 and 2
for gene names and function).

Using real-time PCR we evaluated the expression of these

candidate reference genes in rat hippocampus under four
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Table I: Primer sequences and amplicon characteristics
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Gene Sequence Reference 2 Position Position ~ Amplicon  Product PCR
cDNA® gene length (bp) TMef(°C) efficiencyf (%)

Gapdh 5'-CAACTCCCTCAAGATTGTCAGCAA-3' NM_017008 493-516 Int. span. 118 829 105
5-'GGCATGGACTGTGGTCATGA-3' NC_005103 610-591

Actb © 5-AAGTCCCTCACCCTCCCAAAAG-3' voli217 3474-3495 Exon 97 82.9 92.5
5'-AAGCAATGCTGTCACCTTCCC-3' VoIi217 3570-3550

CypA ¢ 5'-TATCTGCACTGCCAAGACTGAGTG-3' M19533 381404 Int. span. 126 82.0 98
5-CTTCTTGCTGGTCTTGCCATTCC-3' NW_047430 507-485

B2m 5'-CGAGACCGATGTATATGCTTGC-3' NM_012512 286-307 Int. span. 114 79.8 92
5'-GTCCAGATGATTCAGAGCTCCA-3' NC_005102 399-378

Rpll3a 5'-GGATCCCTCCACCCTATGACA-3' NM_173340 334-354 Int. span. 132 83.5 100
5'-CTGGTACTTCCACCCGACCTC-3' NC_005100 464-444

Hprt < 5'-CTCATGGACTGATTATGGACAGGAC-3' NM_012583 179-203 Int. span. 123 80.9 97
5'-GCAGGTCAGCAAAGAACTTATAGCC-3' NW_048050 301-277

Ywhaz 5-GATGAAGCCATTGCTGAACTTG-3' NM_013011 955-976 Int. span. |17 77.6 95
5'-GTCTCCTTGGGTATCCGATGTC-3' NC_005106 1071-1050

Sdha 5'-TCCTTCCCACTGTGCATTACAA-3' NM_130428 1222-1243 Int. span. 105 81.4 98
5-CGTACAGACCAGGCACAATCTG-3' NC_005100 1326-1305

Pgk 5'-ATGCAAAGACTGGCCAAGCTAC-3' NM_053291 969-990 Int. span. 104 81.9 99
5'-AGCCACAGCCTCAGCATATTTC-3' NC_005120 1072-1051

Tbp 5'-TGGGATTGTACCACAGCTCCA-3' NM_001004198 679-699 Int. span. 131 78.2 100
5'-CTCATGATGACTGCAGCAAACC-3' NC_005100 810-789

Mac-14 5'-CTGCCTCAGGGATCCGTAAAG-3' NM_012711 680-700 Int. span. 150 79.8 101
5'-CCTCTGCCTCAGGAATGACATC-3' NW_047562 829-808

a Genebank accession number of cDNA (upper line) and genomic sequences or contigs (lower line), b Position of amplification product within
cDNA sequence (genomic sequence for Actb), Exon; both primers bind to the same exon, Int. span.; primers bind on different exons, < Primer
sequences according to [46], 4 Primer sequences according to [47], © melting temperature of specific PCR product, f calculated by MxPro Mx3005P

v3.00 software (Stratagene, La Jolla, CA)

different experimental conditions: sham operated ani-
mals, sham operated animals with minocycline treat-
ment, ACA and ACA with minocycline treatment. Each of
the four experimental groups was analyzed 4 days, 7 days
and 21 days after the insult.

Quality assessment of qPCR protocol and qPCR efficiency
Agarose gel electrophoresis of PCR products during the

initial optimization experiments revealed single bands for

Table 2: Name and function of the genes

all primer sets (not shown). Moreover, melting curve
analysis was performed after each run. This always dem-
onstrated a single homogenous melt peak, confirming
specific amplification. The melting temperatures of all
PCR products are given in Tab. 1. Since PCR products of
identical size and melting temperature may also arise due
to the existence of processed pseudogenes on the genomic
DNA [30], which potentially contaminates the samples,
additional control experiments were performed. Indeed,

Symbol* Gene name* Function
Gapdh glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme
Actb actin, beta Cytoskeletal structural protein

CypA (synonym Ppia) cyclophilin A (peptidyl prolyl isomerase A)

B2m beta-2 microglobulin

Rpll3a ribosomal protein L13A

Hprt hypoxanthine guanine phosphoribosyl transferase

Ywhaz tyrosine 3-monooxygenase/tryptophan 5 -monooxygenase
activation protein, zeta polypeptide

Sdha Succinat dehydrogenase complex, subunit a, flavoprotein (Fp)

Pgk | phosphoglycerate kinase |

Tbp TATA box binding protein

Catalyzes the cis-trans isomerization of proline imidic
peptide bonds in oligopeptides, accelerating folding
Beta-chain of major histocompatibility complex class |
molecules

Structural component of the large 60S ribosomal subunit
Purine synthesis in salvage pathway

Signal transduction by binding to phosphorylated serine
residues on a variety of signalling molecules

Electron transporter in the TCA cycle and respiratory chain
Glycolytic enzyme

General RNA polymerase Il transcription factor

*according to Entrez Gene database [54]
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several primer pairs (Gapdh, Actb, CypA, Pgkl and Rpl13a)
resulted in amplification products of equal size and melt-
ing temperature with genomic DNA as template, whereas
the other primer pairs did not yield any signal under these
conditions. Therefore, though all primer pairs (except for
Actb) span introns, minus RT controls were performed for
the respective primer pairs. No signals were detected in
the minus RT controls. Calibration curves were generated
using relative concentrations vs. the threshold cycle (Ct).
The RSq value (R?, linear correlation coefficient), an indi-
cator of fit for the standard curve plotted to the standard
data points of all genes ranged from 0.995 to 1.000. Based
on the slopes of the standard curves, the amplification
efficiencies ranged from 92 % to 105 % (Tab. 1), (derived
from the formula PCR efficiency = 10 1/slore -1, calculated
by the Mx3005P software). Efficiencies higher than 100 %
may result from this calculation method, which is an over-
estimate of the "real efficiency" [31].

Determination of the stability of housekeeping genes by
GeNorm and NormFinder

GeNorm was used to identify the most stable reference
gene for each of the three analyzed time points separately.
Fig. 1 shows the average expression stability values M of
the remaining control genes. GeNorm identified CypA
and Pgk1 as the most stable pairwise combination of ref-
erence genes for the experimental groups four days after
ACA treatment (M value for combination of best two
genes 0.145), CypA and Gapdh for the groups 7 days after
the insult (M value for combination of best two genes
0.097) and CypA and Pgkl for the 21 day time point (M
value for combination of best two genes 0.141). Interest-
ingly, for all the analyzed time points B2m shows the
highest M value (generated using all ten genes 0.454, 4
days; 0.531, 7 days; 0.651, 21 days). Moreover, we ana-
lyzed the pairwise variation values (V) between two
sequential normalization factors containing an increasing
number of genes (Fig. 2). The pairwise variation value of
V2/3 is only 0.046 for the experimental group 4 days after
ACA, 0.045 for the 7 days experimental groups and 0.049
for the 21 days groups. According to Vandesompele et al.
[19] the ideal pairwise variation value is less than 0.15.
Thus, although including further reference genes the V
value further decreases, there is no need to include more
than two genes into the normalization factor, because this
would not improve normalization dramatically.

When NormFinder was used to analyze the same data set
a slightly different order of gene stability was calculated
(Tab. 3). More stable gene expression is indicated by
lower average expression stability values. For the experi-
mental groups 4 days after ACA treatment Actb was iden-
tified as the most stable gene with a stability value of
0.035. For the groups 7 days after ACA Gapdh was calcu-
lated to be the most stable gene with a stability value of
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0.032 and for 21 days Tbp with 0.027. Interestingly, B2m
was identified to be the most unstable gene with stability
values 0of 0.132, 0.117 and 0.126 at 4 days, 7 days and 21
days after ACA, respectively.

After having identified the most stable combination of
two reference genes by geNorm, we calculated the expres-
sion of the other genes for each of the three different time
points. Data were normalized to the normalization factor
calculated by geNorm, taking into account the combina-
tion of the two best performing housekeeping genes. Most
of the analyzed candidate reference genes are not signifi-
cantly changed by either of the treatments at any of the
three time points (Fig. 3).

In contrast, B2m transcript, which was identified as the
most unstable gene by geNorm as well as by NormFinder,
is 1.7-fold upregulated in the ACA group and twofold
upregulated in the ACA with minocycline treatment group
4 days after treatment compared to the sham treated
group. At 21 days after treatment there is a 2.4 fold upreg-
ulation in B2m expression in the ACA with minocycline
treatment group vs. control. Though not significant, there
is a trend for B2m mRNA upregulation at 7 days after treat-
ment too (Fig. 4).

Assessment of a microglial activation marker

Using immunohistochemistry, NeuN staining is signifi-
cantly reduced due to ACA compared to sham-operated
animals (Fig. 5A, B). This reflects the neuronal damage
within the CA1 and dentate gyrus regions. The neuronal
loss is paralleled by massive microgliosis, as demon-
strated by OX42 immunostaining (Fig. 5C, D).

Moreover, in order to evaluate our experimental paradigm
also via qRT-PCR, we analyzed the expression of the
microglial marker Mac-1 (synonymous names Cd11b or
Itgam). This gene is constitutively expressed by resting
microglia as well as by macrophages and is known to be
upregulated upon microglia activation [32]. We found an
about 10- to 20-fold upregulation of Mac-1 four days after
the ACA insult which persisted during the later time
points analyzed (Fig. 6).

Discussion

The reliability of qRT-PCR data will be greatly improved
by inclusion of a reference gene which passed all steps of
the analysis similarly to the gene to be quantified [10].
This normalization corrects for variations caused e.g. by
errors in sample quantification, RT efficiency differences
or cDNA sample loading variation.

The transcription level of a good endogenous reference
gene should be invariable by the different experimental
conditions since the use of an unstable gene may cause
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Figure |

Gene expression stability of candidate reference genes. The ggNORM program was used to calculate the average
expression stability values (M) across all four different treatment groups together at 4 days (A), 7 days (B) and 21 days (C) after
ACA treatment. B2m is the least stable gene (highest M value) at all three time points. The combination of CypA/Pgkl, CypA/
Gapdh and CypA/Pgk| are the most stable genes at 4 days, 7 days and 21 days, respectively.
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Figure 2

Determination of the optimal number of control genes. The g¢gNORM program was used to analyze the pairwise vari-
ation between the normalization factor NF_ and NF .. Every bar represents change in normalization accuracy when stepwise
adding more endogenous controls according to ranking in Fig. 1. Data were analyzed for the three different time points 4 days
(A\), 7 days (B) and 21 days (C) after ACA. The use of the two most stable genes is in each case sufficient for an accurate nor-
malization (cutoff 0.15 according to [19]). The higher V9/10 is due to the inclusion of a relative unstable gene, B2m, and is in
accordance with the average expression stability M.
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Table 3: Stability values of HKGs revealed by NormFinder

Gene name 4d 7d 21d

Actb 0.035 0.039 0.033
B2m 0.132 0.117 0.126
CypA 0.053 0.050 0.039
Gapdh 0.062 0.032 0.064
Hprt 0.070 0.061 0.066
Pgk 0.057 0.055 0.048
Rpll3a 0.049 0.062 0.039
Sdha 0.042 0.037 0.048
Tbp 0.060 0.036 0.027
Ywhaz 0.065 0.045 0.068
Best gene Actb Gapdh Tbp

erroneous results, either obscuring real changes or pro-
duce artificial changes of the target genes [17,33].

The present study is the first detailed survey on the stabil-
ity of rat housekeeping genes after a hypoxic ischemic
insult due to ACA. Ten commonly used candidate refer-
ence genes were analyzed. Our observation of pseudog-
ene-driven amplification from genomic DNA during the
initial primer evaluation highlights a general need to con-
trol for these possible artifacts by including Minus RT-
control reactions, even when intron-spanning primers are
used [34].

Using NeuN immunocytochemistry, we clearly demon-
strated the neuronal loss due to ACA, which is in line with
earlier data, based on haematoxylin-eosin staining [3].
This is paralleled by massive microgliosis, as demon-
strated by OX42 immunocytochemistry (Fig. 5). Moreo-
ver, we proved by qRT-PCR that major gene expression
changes indeed occur due to the experimental treatment,
since Mac-1 was found to be upregulated 10 to 20-fold in
the asphyxia groups compared to the control group (Fig.
6). Mac-1 is expressed by microglia cells, where it is
known to be upregulated due to brain damage. In addi-
tion, Mac-1 is expressed by macrophages invading into the
brain [32].

Concerning the candidate reference genes, our results
demonstrate that variations in expression of these genes
do exist. Using geNorm, CypA and Pgk1 were identified as
the two most stable genes after four and 21 days, CypA and
Gapdh after seven days post treatment (Fig. 1). Because
this software relies on pairwise comparisons it results in a
combination of the, at least, two most stable genes. The
average expression stability values M generated by step-
wise exclusion of the most variable gene do not show a
steep, but moderate decrease. This indicates that the vari-
ability of most reference gene expression levels between

http://www.biomedcentral.com/1471-2199/9/53

the samples in the experimental groups is rather small.
Paralleling this, the calculated pairwise variation values
(V) for the inclusion of a third reference gene (V2/3) are
0.046, 0.045 and 0.049 at four, seven and 21 days after
cardiac arrest, respectively (Fig. 2). This is well below 0.15,
the threshold set by Vandesompele et al. [19], below
which further adding of reference genes would not
improve normalization. Thus, normalization with a com-
bination of the two best performing genes is sufficient in
our experimental setup.

Importantly, B2m is clearly identified to be the most
unstable gene for all three time points analyzed.

The alternative program, NormFinder, ranks housekeep-
ing genes according to their expression stability using a
model-based approach [11]. The program estimates both,
the intra- and the inter-group expression variation and
calculates candidate gene stability values. The resulting
order of genes is not identical to the geNorm output, a fact
that is not unexpected since both programs rely on differ-
ent mathematical approaches [35]. Since the stability val-
ues of the genes ranking on the subsequent positions
behind the most stable gene do not differ to a great extent,
these genes are nearly as stable as the best gene. Interest-
ingly, B2m is identified to be the most unstable gene with
NormFinder (Tab. 3). Thus, both tools clearly identify
B2m as the most variable gene in our experimental setup,
which should not be used for normalization purposes in
this experimental paradigm.

These results are somewhat unexpected, since hypoxic
ischemic insults lead to neuronal loss, glial proliferation
and the influx of leukocytes in the relevant brain regions
[36,37]. Therefore we initially suspected that these major
disturbances of the cell populations lead not only to
expression changes in multiple target genes, but also to an
up- or down regulation of genes that are assumed to be
relatively stable in expression under normal circum-
stances. These genes are often referred to as housekeeping
genes. Several studies, performed predominantly in differ-
ent focal ischemia models, support this assumption. It has
been shown, that the expression for example of Actb,
Gapdh or CypA, commonly used control genes, varies con-
siderably, depending on the model used and the time
points analyzed. For example, a middle cerebral artery
occlusion model of focal ischemia alters Actb transcript
level [38,39], Gapdh mRNA amount [40] or both [41,42].
Changes in Gapdh and Actb expression were demonstrated
also in a mouse model of transient forebrain ischemia
[43] as well as in a rat model of global cerebral ischemia
[44] using microarrays. Contradictory to the above find-
ings, reporting variations in housekeeping gene expres-
sion after various ischemic insults, Meldgaard et al. [45]
demonstrated Gapdh as well as Hprt to be reasonable sta-
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Figure 4

B2m is unsuitable as an endogenous control gene after ACA treatment. Scatterplots showing BZm mRNA levels in
the different treatment groups.B2m expression in hippocampus is upregulated due to asphyxial cardiac arrest 4 days (A) and 21
days (C) after treatment. Though not significant, there is a tendency for B2m upregulation 7 days after ACA too (B). Compared
to the sham treated group B2m expression is 1.7 £ 0.30 -fold upregulated in the ACA group (p-value 0.038) and 2.0 + 0.39 -
fold upregulated in the ACA with minocycline treatment group (p-value 0.009), respectively four days after the injury. Twenty-
one days after treatment B2Zm is 2.4 + 0.49 -fold upregulated in the ACA with minocycline treatment group (p-value 0.020) vs.
sham operated group. Absolute gene regulation value, standard error and p-value are given as calculated using REST-MCS soft-
ware.
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Figure 5

Immunofluorescence staining of the hippocampus. In
sham-operated animals (A), the hippocampus appeared intact
on NeuN immunostaining 2| day post insult. Asphyxia-
exposed animals (B), however, showed a significant decrease
of NeuN immunopositive cells, particularly prominent in the
CAI and dentate gyrus regions. In parallel, OX42-immunocy-
tostaining (red) revealed a massive microgliosis in the CAl
region (D) when compared to sham-operated animals (C). C,
D: MAP2 counter stained, bar = 400 um.

ble in four neurological disease models. Altogether, this
demonstrates that a careful screen for reliable reference
genes is indispensable for each individual experimental
situation.

It is interesting to note, that the spread of data points orig-
inating from the individual animals is much wider for
Mac-1 as well as B2m in the asphyxia groups, than for the
other analyzed genes in all experimental groups (Figs. 4,
6). Mac-1, the microglia marker is clearly upregulated,
mirroring activation/proliferation of these cells in the
injured brain after ACA. However, as seen by the spread of
data points, the extent of upregulation differs markedly
between the individuals. One may speculate that each ani-
mal performs slightly different to the ACA procedure, for
example due to the individuality in the vascular network
of the brain. This may lead to the gradually different
extent of gene expression changes of regulated genes,
whereas unregulated genes do not show this variation.

Conclusion

Taken together, our data provide a guideline helping to
choose reference genes for the analysis of long term gene
expression changes due to ACA. Our results suggest the
use of the geometric mean of CypA and Pgkl four and 21
days after treatment and CypA and Gapdh at seven days,
respectively. These combinations seem appropriate for the
detection of slight changes. On the other hand, due to

http://www.biomedcentral.com/1471-2199/9/53

higher costs and efforts using more than one reference
gene in multiple samples, only a single reference gene
may be preferred. This decision depends on the degree of
accuracy required. Based on our data, CypA could best be
used as an internal reference gene under such circum-
stances. Furthermore, our data confirm that suitable refer-
ence genes are highly specific for a particular experimental
situation, thus requiring a careful evaluation for every
individual experimental setup.

Methods

Asphyxial cardiac arrest model

All animals were maintained in accordance with the
guidelines of the German Animal Welfare Act. The study
was approved by the Animal Care and Use Committees of
the State of Saxony-Anhalt and the University of Magde-
burg under the permit number G/1/06. The animals were
housed under temperature -controlled conditions at 21 +
1°C, a 12 h light/dark cycle, and free access to standard rat
chow (Altromin 1324™, Altromin GmbH, Lage, Ger-
many) and water.

Sixty age-matched (15 weeks, 300-350 g) and strain-
matched (Wistar, inbred, Harlan-Winkelmann; Borchen,
Germany) male rats were divided into four treatment
groups: (i) asphyxial cardiac arrest (ACA); (ii) ACA with
minocycline treatment; (iii) sham operated; (iv) sham
operated, with minocycline treatment. Three different sur-
vival times were analyzed per group: 4 days, 7 days and 21
days. Thus, 5 animals were used per treatment and time
point.

The surgery protocol has been described in detail previ-
ously by Ebmeyer et al. [3] with the slight modification
that resuscitation was started exactly after 5 min of
asphyxiation. During preparation, the insult and the first
hour post return of spontaneous circulation (ROSC) body
temperature was controlled and maintained at 37°C. Rats
were then further kept at normal body temperature
(37°C) by placing them in an incubator cage for 24 h
post-resuscitation. Blood pressure values were measured
according to the protocol. The mean artery pressure
(MAP) values were similar in all animals included in the
study and the course over time closely resembled the pub-
lished data for intra-insult temperature-controlled Wistar
rats [3]. Animals that showed critical low blood pressure
levels (MAP < 50 mmHg) were excluded from further
analysis.

Minocycline hydrochloride (Sigma, St. Louis, USA) was
administered twice a day, i.p., at a dosage of 6 mg every 12
hours for a period of 5 days. First minocycline injection
was performed 60 min after ROSC. The drug was dis-
solved in PBS at a concentration of 6 mg/ml. Between the
injections the solution was stored at 6 °C for five days. The
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Figure 6

Mac-1 is upregulated after ACA treatment. Scatterplots showing Mac-| mRNA levels in the different treatment groups.
Compared to the sham treated group the expression of the microglia marker Mac-1 is 9.3 + 2.34 -fold upregulated four days
after the insult in the asphyxial cardiac arrest group (p-value 0.006) and 14.9 £ 4.56 -fold in the ACA with minocycline treat-
ment group (p-value 0.001) (A). Seven days after treatment Mac-1 is 10.3 + 6.18 -fold (p-value 0.011) and 9.2 + 4.84 -fold (p-
value 0.001) upregulated in the ACA and in the ACA with minocycline treatment groups, respectively (B). The increased Mac-
| expression is detectable 21 days after the insult too (14.3 + 9.17-fold, p-value 0.024 and 22.2 £ 9.93-fold, p-value 0.006) in
the ACA and ACA with minocycline treatment groups, respectively (C). Calculations were done using REST-MCS software.
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volume to be injected was adapted to room temperature
before the injection. Sham operated animals received a
PBS injection (1 ml).

Rats were sacrificed by decapitation during deep anesthe-
sia. Brains were quickly removed and, for qRT-PCR, hip-
pocampus was dissected on ice, immediately frozen on
dry ice and stored at -80°C until RNA extraction.

Immunohistochemistry

For immunohistochemistry, brains were quickly removed
from the cranium, postfixed in 4 % buffered paraformal-
dehyde (pH 7.4) at 4°C overnight, cryoprotected in a
solution of 30 % sucrose (Merck) in 0.4 % buffered para-
formaldehyde (pH 7.4) for 2 days and rapidly frozen at -
20°C using 2-methylbutan (Roth, Karlsruhe, Germany).
Serial sagittal sections (20 pm thick) were cut on a cryostat
(Jung Frigocut 2800 E, Leica, Bensheim, Germany). Free-
floating sections were washed and incubated with mono-
clonal mouse anti-NeuN (Chemicon, Temecula, CA,
1:100), polyclonal rabbit anti-MAP 2 (microtubule-asso-
ciated protein 2, Chemicon 1:2.500), or monoclonal
mouse anti-CD 11b/c (OX42, PharMingen, Hamburg,
Germany, 1:800) in PBS with 0.3 % Triton X-100 and 1 %
normal goat serum overnight at 4°C. Following incuba-
tion with primary antibodies, slices were washed in PBS (3
x 5 min), and incubated overnight with the respective sec-
ondary antibodies (1:500, goat anti-mouse-IgG Alexa
Fluor 488, goat anti-rabbit-IgG Alexa Fluor 488, goat anti-
mouse-IgG Alexa Fluor 546, Molecular Probes, Gottingen,
Germany), mounted and examined on a fluorescence
microscope (Axiophot, Zeiss). Control reactions (substi-
tution of the primary antisera by phosphate buffered
saline) yielded negative results (i.e. no specific immunos-
taining was seen in these sections).

Reference gene selection and primer design

Candidate reference genes were selected from those most
commonly used in the literature. To reduce the chance
that these genes might be coregulated, ten genes belong-
ing to different functional classes were selected. Primers
for Actb, CypA and Hprt were as published by Peinnequin
etal. [46]. Mac-1 primers were as published by Raghaven-
dra et al. [47]. All other primers were designed by the
primer 3 software [48] based on rat sequences in the data-
base [49]. Here primers were chosen, that bind to differ-
ent exons in order to avoid non-specific product
formation from potentially contaminating genomic DNA.
The specificity of the primers was checked using a BLAST
search against nucleotide collection (nr) of the NCBI data-
base.

All primers were synthesized by MWG Biotech (Ebersberg,
Germany). The sequences of primers are listed in Tab. 1.

http://www.biomedcentral.com/1471-2199/9/53

RNA isolation and reverse transcription

Hippocampal tissue was homogenized in peqGOLD Tri-
Fast (Total RNA Isolation Reagent, PeqLab, Erlangen, Ger-
many) using an Ultra-Turrax Homogenizer (IKA
Labortechnik, Staufen i. Br., Germany). Total RNA was
prepared according to the manufacturers instructions. The
concentration of total RNA was determined by measuring
the optical density at 260 nm and the purity was checked
as the 260 nm/280 nm ratio with expected values between
1.8 and 2.0. The integrity of total RNA was assessed by
electrophoresis on 1.2 % (w/v) agarose gels. To remove
potential DNA contamination, the RNA samples were
DNase treated (TURBO DNA-free Kit, Ambion, Austin,
USA). First strand cDNA was prepared from 1 ug DNase
treated total RNA in a total volume of 20 pl using the
RevertAid First Strand cDNA Synthesis Kit (Fermentas, St.
Leon-Roth, Germany). Oligo(dT), ¢ primers were used and
all samples were stored at -80°C until further analysis.
Additionally, cDNA was prepared from a mixed RNA sam-
ple (later referred to as pool cDNA) for each of the tree
time points. For this purpose equal amounts of DNase
treated total RNA of all twenty samples of each time point
were mixed. Moreover, minus RT controls were prepared
for each sample using the identical procedure except for
the omission of the enzyme.

Real-time PCR

The real-time PCR was performed using the MX3005P
device (Stratagene, La Jolla, CA, USA). The reactions con-
tained 1x Brilliant SYBR Green QPCR Master Mix (Strata-
gene), 30 nM ROX reference dye, each primer at 200 nM
and prediluted cDNA (according to 10 ng total RNA) in a
25 ul reaction. After an initial denaturation step at 95°C
for 10 min amplification was performed with 40 cycles of
denaturation at 95°C for 30 s, annealing at 60°C for 40 s
and extension at 72°C for 40 s. Amplification was fol-
lowed by a melting curve analysis to confirm PCR product
specificity.

No signals were detected in no-template controls. Minus
RT controls were run for those primer pairs, that have
been shown to give a PCR product of same size and melt-
ing temperature in initial test experiments with genomic
DNA (0.1-50 ng/well). No signals were detected in the
minus RT controls.

The experimental threshold (Ct) was calculated using the
algorithm enhancements provided by the MxPro
Mx3005P v3.00 software: amplification based threshold,
adaptive baseline, moving average. All samples were run
in duplicate and the mean value of each duplicate was
used for all further calculations.

During optimization of the protocol PCR products were

loaded on 2 % agarose gels to confirm specificity of ampli-
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fication and the absence of primer dimer formation. PCR
efficiencies were estimated by running standard curves
with the above described pool cDNA (5 points, cDNA
amount between 25 ng and 0.04 ng according to initial
total RNA concentration).

Determination of reference gene expression stability

Two publicly available software tools, geNorm [19] and
NormFinder [11] were used to analyze gene expression
stability. Both tools require the transformation of Ct val-
ues to linear scale expression quantities. The average Ct
values of the duplicates were therefore exported into
Microsoft Excel from the Mx3005P software. Ct values
were converted into relative quantities (Q) via the delta-
Ct method by the formula Q = (E)4¢, with dCt = Ct of the
highest abundant sample-Ct of the sample and E (effi-
ciency) as determined by linear regression (calculated by
the Mx3005P software). The quantities were then
imported into geNorm software [50] (version 3.4), which
was used as described in its manual. Twenty data points
were used per time point (five biological replicates per
treatment). Each of the three time points was analyzed
separately. GeNorm calculates a gene-stability measure M,
which is the average pairwise variation of a particular gene
with all other control genes. Genes are ranked according
to the determined M value from the least stable (highest
M value) to the most stable (lowest M value).

Moreover, the calculated quantities were entered into a
second software tool, NormFinder [51]. NormFinder esti-
mates the overall expression variation of the candidate
normalization genes and the variation between sample
subgroups of the sample set using a model-based
approach [11]. According to the resulting stability value
the candidate reference genes can be ranked based on
their expression stability.

A workflow diagram schematically depicting the process
of stable gene selection is provided (Additional file 1).

Calculation of the expression ratio of candidate reference
genes in the different treatment groups versus control

The relative expression software tool (REST®) [52,53] was
adopted to calculate expression ratios. This software
allows for a group-wise comparison of expression differ-
ences. Moreover, the expression ratio results are tested for
significance by a Pair Wise Fixed Reallocation Randomisa-
tion Test ©. Out of the several software versions, REST-MCS
was chosen, because this allows the comparison of up to
six experimental conditions against one reference condi-
tion for up to ten samples per group. Each of the three
time points was analyzed separately. The experimental
group (iii), i.e. sham operated, served as the reference con-
dition. The two most stable genes, as calculated in
advance by geNorm, were set as reference genes. The abso-
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lute gene regulation values along with the corresponding
standard error, calculated by the REST-MCS software, were
then forwarded to Microsoft Excel to create the graph pre-
sented in Fig. 3. For comparison, the reference condition,
i.e. sham operated, was assigned a value of 1.

Calculation of the relative expression of B2m and Mac-I|
in the different treatment groups

Ct values were converted into relative quantities (Q) via
the delta-Ct method by the formula Q = (E)4¢, with dCt =
Ct of the highest abundant sample-Ct of the sample and E
(efficiency). Relative quantities were normalized by divid-
ing by the normalization factor calculated by geNorm
from the two most stable genes. Normalized relative
quantities were then rescaled by dividing by the arithme-
tic mean of the normalized relative quantities of the con-
trol group (sham w/o). The calculated values were
imported into Prism 4 program (GraphPad Software, Inc.,
San Diego, CA) to generate the scatterplots presented in
Fig. 4 and Fig. 6.
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ing software manuals [55,56]. For the principle of these programs see
[11,19]. Transformation of raw Ct values into quantities can alterna-
tively be performed using standard curves. The use of five to ten candidate
reference genes is strongly recommended [56]. (HKG: Abbr. housekeep-
ing gene).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-9-53-S1.pdf]

Acknowledgements
The authors wish to thank Regina Dobrowolny and Leona Biick for excel-
lent technical assistance, and Dr. Peter Kreutzmann for helpful discussions.

References

I.  Cole SL, Corday E: Four-minute limit for cardiac resuscitation.
J Am Med Assoc 1956, 161:1454-1458.

Page 13 of 15

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2199-9-53-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13345605

BMC Molecular Biology 2008, 9:53

20.
21.

22.

23.

Safar P: Cerebral resuscitation after cardiac arrest: a review.
Circulation 1986, 74:1V138-153.

Ebmeyer U, Keilhoff G, Wolf G, Rose W: Strain specific differ-
ences in a cardio-pulmonary resuscitation rat model. Resusci-
tation 2002, 53:189-200.

Hicks SD, DeFranco DB, Callaway CW: Hypothermia during
reperfusion after asphyxial cardiac arrest improves func-
tional recovery and selectively alters stress-induced protein
expression. | Cereb Blood Flow Metab 2000, 20:520-530.

Hickey RW, Zhu RL, Alexander HL, Jin KL, Stetler RA, Chen |,
Kochanek PM, Graham SH: 10 kD mitochondrial matrix heat
shock protein mRNA is induced following global brain
ischemia in the rat. Brain Res Mol Brain Res 2000, 79:169-173.
Katz LM, Lotocki G, Wang Y, Kraydieh S, Dietrich WD, Keane RW:
Regulation of caspases and XIAP in the brain after asphyxial
cardiac arrest in rats. Neuroreport 2001, 12:3751-3754.

Li ZP, Chen SQ, Wang SS, Huang WJ, Cheng JY, Wang W, Wang WT,
Tan YX: [Expression of mMRNA of matrix metalloproteinase
and tissue inhibitor of matrix metalloproteinase after cardi-
opulmonary resuscitation for asphyxial cardiac arrest in rat].
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2005, 17:548-551.

Vosler PS, Logue ES, Repine MJ, Callaway CWV: Delayed hypother-
mia preferentially increases expression of brain-derived neu-
rotrophic factor exon Il in rat hippocampus after asphyxial
cardiac arrest. Brain Res Mol Brain Res 2005, 135:21-29.

D'Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway
CW: Hypothermic reperfusion after cardiac arrest augments
brain-derived neurotrophic factor activation. | Cereb Blood
Flow Metab 2002, 22:843-851.

Huggett |, Dheda K, Bustin S, Zumla A: Real-time RT-PCR nor-
malisation; strategies and considerations. Genes Immun 2005,
6:279-284.

Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time
quantitative reverse transcription-PCR data: a model-based
variance estimation approach to identify genes suited for
normalization, applied to bladder and colon cancer data
sets. Cancer Res 2004, 64:5245-5250.

Bustin SA: Quantification of mMRNA using real-time reverse
transcription PCR (RT-PCR): trends and problems. | Mol
Endocrinol 2002, 29:23-39.

Bonefeld BE, Elfving B, Wegener G: Reference genes for normal-
ization: A study of rat brain tissue. Synapse 2008, 62:302-309.
Ohl F, Jung M, Radonic A, Sachs M, Loening SA, Jung K: Identifica-
tion and validation of suitable endogenous reference genes
for gene expression studies of human bladder cancer. | Urol
2006, 175:1915-1920.

Pombo-Suarez M, Calaza M, Gomez-Reino ]|, Gonzalez A: Refer-
ence genes for normalization of gene expression studies in
human osteoarthritic articular cartilage. BMC Mol Biol 2008,
9:17.

Infante C, Matsuoka MP, Asensio E, Canavate P, Reith M, Manchado
M: Selection of housekeeping genes for gene expression stud-
ies in larvae from flatfish using real-time PCR. BMC Mol Biol
2008, 9:28.

Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook
GA, Zumla A: The implications of using an inappropriate ref-
erence gene for real-time reverse transcription PCR data
normalization. Anal Biochem 2005, 344:141-143.

Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A: Val-
idation of housekeeping genes for normalizing RNA expres-
sion in real-time PCR. Biotechniques 2004, 37:112-114. 116, 118-
119

Vandesompele ], De Preter K, Pattyn F, Poppe B, Van Roy N, De
Paepe A, Speleman F: Accurate normalization of real-time
quantitative RT-PCR data by geometric averaging of multi-
ple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
Smilack JD: The tetracyclines. Mayo Clin Proc 1999, 74:727-729.
Blum D, Chtarto A, Tenenbaum L, Brotchi ], Levivier M: Clinical
potential of minocycline for neurodegenerative disorders.
Neurobiol Dis 2004, 17:359-366.

Yong VW, Wells |, Giuliani F, Casha S, Power C, Metz LM: The
promise of minocycline in neurology. Lancet Neurol 2004,
3:744-751.

Stirling DP, Koochesfahani KM, Steeves |D, Tetzlaff W: Minocycline
as a neuroprotective agent. Neuroscientist 2005, 11:308-322.

24.

25.

26.

27.

28.

29.

30.

31

32
33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

http://www.biomedcentral.com/1471-2199/9/53

Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC: Minocycline
for short-term neuroprotection. Pharmacotherapy 2006,
26:515-521.

Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koisti-
naho J: A tetracycline derivative, minocycline, reduces inflam-
mation and protects against focal cerebral ischemia with a
wide therapeutic window. Proc Natl Acad Sci USA 1999,
96:13496-13500.

Xu L, Fagan SC, Waller JL, Edwards D, Borlongan CV, Zheng J, Hill
WD, Feuerstein G, Hess DC: Low dose intravenous minocycline
is neuroprotective after middle cerebral artery occlusion-
reperfusion in rats. BMC Neurol 2004, 4:7.

Wang CX, Yang T, Shuaib A: Effects of minocycline alone and in
combination with mild hypothermia in embolic stroke. Brain
Res 2003, 963:327-329.

Weng YC, Kriz J: Differential neuroprotective effects of a
minocycline-based drug cocktail in transient and permanent
focal cerebral ischemia. Exp Neurol 2007, 204:433-442.
Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kaup-
pinen RA, Opdenakker G, Koistinaho J: Minocycline protects
against permanent cerebral ischemia in wild type but not in
matrix metalloprotease-9-deficient mice. | Cereb Blood Flow
Metab 2005, 25:460-467.

Zhang Z, Harrison PM, Liu Y, Gerstein M: Millions of years of evo-
lution preserved: a comprehensive catalog of the processed
pseudogenes in the human genome. Genome Res 2003,
13:2541-2558.

Bustin SA: A-Z of quantitative PCR | edition. La Jolla: International Uni-
versity Line, CA, USA; 2004.

Stoll G, Jander S: The role of microglia and macrophages in the
pathophysiology of the CNS. Prog Neurobiol 1999, 58:233-247.
Ropenga A, Chapel A, Vandamme M, Griffiths NM: Use of refer-
ence gene expression in rat distal colon after radiation expo-
sure: a caveat. Radiat Res 2004, 161:597-602.

Mutimer H, Deacon N, Crowe S, Sonza S: Pitfalls of processed
pseudogenes in RT-PCR. Biotechniques 1998, 24:585-588.
Willems E, Mateizel |, Kemp C, Cauffman G, Sermon K, Leyns L:
Selection of reference genes in mouse embryos and in differ-
entiating human and mouse ES cells. Int | Dev Biol 2006,
50:627-635.

Lipton P: Ischemic cell death in brain neurons. Physiol Rev 1999,
79:1431-1568.

Wang Q, Tang XN, Yenari MA: The inflammatory response in
stroke. | Neuroimmunol 2007, 184:53-68.

Bemeur C, Ste-Marie L, Desjardins P, Hazell AS, Vachon L, Butter-
worth R, Montgomery J: Decreased beta-actin mRNA expres-
sion in hyperglycemic focal cerebral ischemia in the rat.
Neurosci Lett 2004, 357:211-214.

Harrison DC, Medhurst AD, Bond BC, Campbell CA, Davis RP, Phil-
pott KL: The use of quantitative RT-PCR to measure mRNA
expression in a rat model of focal ischemia — caspase-3 as a
case study. Brain Res Mol Brain Res 2000, 75:143-149.

Lennmyr F, Terent A, Syvanen AC, Barbany G: Vascular endothe-
lial growth factor gene expression in middle cerebral artery
occlusion in the rat. Acta Anaesthesiol Scand 2005, 49:488-493.
Tian YF, Zhang PB, Xiao XL, Zhang JS, Zhao ]J, Kang QY, Chen XL,
Qiu F, Liu Y: The quantification of ADAMTS expression in an
animal model of cerebral ischemia using real-time PCR. Acta
Anaesthesiol Scand 2007, 51:158-164.

Bond BC, Virley DJ, Cairns NJ, Hunter AJ, Moore GB, Moss §J, Mudge
AW, Walsh FS, Jazin E, Preece P: The quantification of gene
expression in an animal model of brain ischaemia using Taq-
Man real-time RT-PCR. Brain Res Mol Brain Res 2002,
106:101-116.

Nishida Y, Sugahara-Kobayashi M, Takahashi Y, Nagata T, Ishikawa K,
Asai S: Screening for control genes in mouse hippocampus
after transient forebrain ischemia using high-density oligo-
nucleotide array. | Pharmacol Sci 2006, 101:52-57.

Kobayashi MS, Takahashi Y, Nagata T, Nishida Y, Murata A, Ishikawa
K, Asai S: Screening for control genes in rat global cerebral
ischemia using high-density oligonucleotide array. | Neurosci
Res 2004, 76:512-518.

Meldgaard M, Fenger C, Lambertsen KL, Pedersen MD, Ladeby R, Fin-
sen B: Validation of two reference genes for mRNA level
studies of murine disease models in neurobiology. | Neurosci
Methods 2006, 156:101-110.

Page 14 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3536160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12009223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12009223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10724117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10724117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10724117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10925156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10925156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10925156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16146602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16146602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15815687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12200227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18241047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18241047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18325098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18325098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16054107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16054107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16054107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15283208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10405705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15571972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15571972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15556807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15556807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16061518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16061518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16553511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16553511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10557349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10557349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10557349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12560140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12560140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17234187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17234187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17234187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15674236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15674236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15674236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10341362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10341362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9564529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9564529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16892176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16892176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16892176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15003287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15003287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10648898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15114623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15114623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554095

BMC Molecular Biology 2008, 9:53

46.

47.

48.

49.
50.
51,
52.

53.

54.
55.

56.

Peinnequin A, Mouret C, Birot O, Alonso A, Mathieu J, Clarencon D,
Agay D, Chancerelle Y, Multon E: Rat pro-inflammatory cytokine
and cytokine related mRNA quantification by real-time
polymerase chain reaction using SYBR green. BMC Immunol
2004, 5:3.

Raghavendra V, Tanga FY, DelLeo JA: Complete Freunds adju-
vant-induced peripheral inflammation evokes glial activation
and proinflammatory cytokine expression in the CNS. Eur |
Neurosci 2004, 20:467-473.

Rozen S, Skaletsky H: Primer3 on the WWW for general users
and for biologist programmers. Methods Mol Biol 2000,
132:365-386.

GenBank [http://www.ncbi.nlm.nih.gov/Genbank/]

geNorm [http://medgen.ugent.be/~jvdesomp/genorm/]
NormFinder [http://www.mdl.dk/publicationsnormfinder.htm]
Relative expression software tool (REST) [http://rest.gene-
quantification.info]

Pfaffl MW, Horgan GW, Dempfle L: Relative expression software
tool (REST) for group-wise comparison and statistical analy-
sis of relative expression results in real-time PCR. Nucleic
Acids Res 2002, 30:e36.

Entrez Gene [http://www.ncbi.nlm.nih.gov/sites/entrez]
geNorm software manual [http://medgen.ugent.be/~jvdesomp/

genorm/geNorm_manual.pdf]
NormFinder - How to

snormfinder.htm]. Link 'Documentation’.

[http://mdl.dk/publication

http://www.biomedcentral.com/1471-2199/9/53

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15040812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15233755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15233755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15233755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547847
http://www.ncbi.nlm.nih.gov/Genbank/
http://medgen.ugent.be/~jvdesomp/genorm/
http://www.mdl.dk/publicationsnormfinder.htm
http://rest.gene-quantification.info
http://rest.gene-quantification.info
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972351
http://www.ncbi.nlm.nih.gov/sites/entrez
http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf
http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf
http://mdl.dk/publicationsnormfinder.htm
http://mdl.dk/publicationsnormfinder.htm
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Quality assessment of qPCR protocol and qPCR efficiency
	Determination of the stability of housekeeping genes by GeNorm and NormFinder
	Assessment of a microglial activation marker

	Discussion
	Conclusion
	Methods
	Asphyxial cardiac arrest model
	Immunohistochemistry
	Reference gene selection and primer design
	RNA isolation and reverse transcription
	Real-time PCR
	Determination of reference gene expression stability
	Calculation of the expression ratio of candidate reference genes in the different treatment groups versus control
	Calculation of the relative expression of B2m and Mac-1  in the different treatment groups

	Authors' contributions
	Additional material
	Acknowledgements
	References

